|
|
Balance strategy for lithium batteries based on dynamic internal resistance |
DENG Bingjie, WANG Weiping, XIONG Gang |
Fujian Nebula Electronic Co., Ltd, Fuzhou 350028 |
|
|
Abstract The new energy industry is rapidly emerging with the support of national policies and industrial trends. Large lithium battery modules are more and more widely used, which are generally made of multiple small single cells in series. Due to process differences, these cells are directly unbalanced after a long time of work. If they are replaced directly, the cost is very high. In most cases, the unbalanced lithium battery modules can be balanced and repaired. At present, the balancing strategy used by most balancing devices has a long balancing time. The lithium battery equalization strategy based on dynamic internal resistance tracking studied in this paper introduces the detection of line resistance and internal resistance on the basis of the traditional constant current charge-discharge equalization strategy. Based on the dynamic changes of the line resistance and internal resistance and the real-time characteristics of the charge and discharge of the cell, the output voltage of the equalization module is compensated, so that the voltage of the equalization module always follows the change of the cell voltage, and the cell is basically in the state of constant current charge and discharge. By comparing the real battery, it can be concluded that the dynamic following equalization strategy can improve the equalization efficiency under the premise of ensuring safety.
|
Received: 26 December 2022
|
|
|
|
Cite this article: |
DENG Bingjie,WANG Weiping,XIONG Gang. Balance strategy for lithium batteries based on dynamic internal resistance[J]. Electrical Engineering, 2023, 24(4): 42-47.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I4/42
|
[1] 布轩. 2021年我国锂离子电池行业实现持续快速增长[N]. 中国电子报, 2022-03-01(1). [2] 东亚前海证券. 动力电池“退役潮”来临,回收行业景气将至[J]. 汽车与配件, 2022(5): 58-61. [3] 刘垠. 直面挑战, 新能源汽车向科技创新要答案[N]. 科技日报, 2022-3-28(1). [4] 黄燕琴, 聂金泉, 王敖, 等. 锂离子电池不一致性综述[J]. 时代汽车, 2022(5): 102-107. [5] 郭向伟, 邢程, 司阳, 等. RLS锂电池全工况自适应等效电路模型[J]. 电工技术学报, 2022, 37(16): 4029-4037. [6] 于沛, 王常乐. 基于局部均值分解和极限学习机的锂电池剩余寿命预测[J]. 电气技术, 2023, 24(1): 23-28. [7] 孙志浩. 动力电池主动均衡技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [8] 张凯, 赵鹏, 王友仁, 等. 基于荷电状态的锂离子电池组主动均衡控制[J]. 中国机械工程, 2020, 31(16): 1931-1939. [9] 刘亚运. 锂离子电池SOC估计与电池组均衡技术研究[D]. 淮南: 安徽理工大学, 2019. [10] 刘秀岗. 动力电池组充电过程中主动均衡策略研究[D]. 长春: 吉林大学, 2017. [11] 张加林. 动力电池主动均衡系统关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [12] 聂江霖, 杨江朋, 蔡春健, 等. 基于多端口变压器的串联锂电池均压电路[J]. 电工技术学报, 2021, 36(20): 4274-4284. [13] 刘红锐, 张开翔, 郭奕旋, 等. 一种串联蓄电池系统多重多状态能量均衡器及其控制方法[J]. 电工技术学报, 2020, 35(增刊2): 652-660. [14] 于跃, 林聪, 张恒. 基于荷电状态的锂离子电池主动均衡控制系统的研究与实现[J]. 电气技术, 2019, 20(8): 18-22, 27. [15] 麦鹏. 电动汽车动力系统故障检测及诊断方法研究[D]. 西安: 长安大学, 2019. [16] 于盈盈, 焦梦锦. 电动汽车电池均衡技术专利发展现状分析[J]. 机电信息, 2019(35): 168-169. [17] 吕文强. 动力电池组均衡充电协调控制策略研究[D]. 长春: 吉林大学, 2016. [18] 马亚东. 基于模糊阈值的电动汽车电池组能量均衡控制策略研究[D]. 合肥: 合肥工业大学, 2017. [19] 李有财, 王伟平, 邓秉杰, 等. 一种便携式电芯均衡装置: CN114421031A[P].2022-04-29. [20] 李新宏. 动力锂电池组充电管理电路设计[J]. 电子世界, 2015(17): 37-38. [21] 徐东辉. 锂电池一阶RC等效电路模型的动力学特性分析[J]. 电源技术, 2021, 45(11): 1448-1452. [22] 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725. |
|
|
|