|
|
Study on trap distribution characteristics and energy storage performance improvement of polypropylene nanocomposites |
ZHANG Yuanshuo, MIN Daomin, GAO Ziwei, ZHU Yuanwei, WANG Shihang |
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 |
|
|
Abstract In order to explore the trap distribution characteristics of nanocomposite dielectrics and its mechanism of improving energy storage performance, three polypropylene nanocomposite dielectrics are prepared, and their physicochemical, dielectric and energy storage properties are tested. The test results show that the samples doped with boron nitride nanosheets have higher melting temperature, crystallinity, polarization strength, resistivity, breakdown strength and energy storage density. The experimental results show that the electric field dependence of pure polypropylene and nanocomposites conforms to the hopping conductance model under the exponential trap. The temperature dependence meets the Meyer-Neldel compensation rule, which indicates that the mechanism of exponential distribution trap in nanocomposite dielectric is the same as that of matrix. The fitting results show that nano-doping mainly changes the deepest trap energy in the composites, which is proportional to the crystallinity. The mechanism of increasing trap energy level and energy storage density is explained based on fringed microbeam model. This indicates that the ordered and tight interfacial region of the nanocomposites will restrict the movement of molecules, thus hindering charge transport and energy accumulation, which will improve the resistivity and breakdown strength of the material, and finally realize the improvement of energy storage performance.
|
Received: 24 June 2023
|
|
|
|
Cite this article: |
ZHANG Yuanshuo,MIN Daomin,GAO Ziwei等. Study on trap distribution characteristics and energy storage performance improvement of polypropylene nanocomposites[J]. Electrical Engineering, 2023, 24(9): 11-19.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2023/V24/I9/11
|
[1] 王文杰, 马建, 陈鑫. 高温高热对电力电容器的影响及处理措施[J]. 电气技术, 2013, 14(2): 105-106, 109. [2] 孙晓武. 直流支撑电容器温升影响因素研究[J]. 电气技术, 2020, 21(4): 76-79. [3] LI Qi, CHEN Lei, GADINSKI M R, et al.Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576-579. [4] LIU Biao, YANG Minhao, ZHOU Wenying, et al.High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor[J]. Energy Storage Materials, 2020, 27: 443-452. [5] 刘金刚, 张秀敏, 田付强, 等. 耐高温聚合物电介质材料的研究与应用进展[J]. 电工技术学报, 2017, 32(16): 14-24. [6] 刘文凤, 刘标, 程璐. 高储能聚合物电介质材料研究进展[J]. 高电压技术, 2023, 49(3): 1046-1054. [7] ZHOU Yao, HU Jun, DANG Bin, et al.Effect of different nanoparticles on tuning electrical properties of polypropylene nanocomposites[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2017, 24(3): 1380-1389. [8] ZHOU Yao, HU Jun, DANG Bin, et al.Mechanism of highly improved electrical properties in polypropylene by chemical modification of grafting maleic anhydride[J]. Journal of Physics D: Applied Physics, 2016, 49(41): 415301. [9] 钟少龙, 郑明胜, 邢照亮, 等. 无机颗粒形状对高储能密度有机复合材料介电性能的影响[J]. 复合材料学报, 2020, 37(11): 2760-2768. [10] 郭相坤, 周益明, 姚杰. 高分子材料的红外光谱解析系统[J]. 安庆师范学院学报(自然科学版), 2004(1): 53-54. [11] 杜伯学, 冉昭玉, 刘浩梁, 等. 干式直流电容器聚丙烯薄膜绝缘性能及其改进方法研究进展[J]. 电工技术学报, 2023, 38(5): 1363-1374. [12] 叶润峰, 裴家耀, 郑明胜, 等. 高介电聚丙烯基纳米复合薄膜介电及储能性能抗老化特性[J]. 电工技术学报, 2020, 35(16): 3529-3538. [13] 迟庆国, 崔爽, 张天栋, 等. 碳化硅晶须/环氧树脂复合介质非线性电导特性研究[J]. 电工技术学报, 2020, 35(20): 4405-4414. [14] KUMAR V, JAIN S C, KAPOOR A K, et al.Trap density in conducting organic semiconductors deter- mined from temperature dependence of J-V charac- teristics[J]. Journal of applied physics, 2003, 94(2): 1283-1285. [15] 郑煜, 吴建东, 王俏华, 等. 空间电荷与直流电导联合测试技术用于纳米MgO抑制XLPE中空间电荷的研究[J]. 电工技术学报, 2012, 27(5): 126-131. [16] BOUFAYED F, TEYSSEDRE G, LAURENT C, et al.Models of bipolar charge transport in polyethylene[J]. Journal of Applied Physics, 2006, 100(10): 104105. [17] YUAN Chao, ZHOU Yao, ZHU Yujie, et al.Polymer/ molecular semiconductor all-organic composites for high-temperature dielectric energy storage[J]. Nature Communications, 2020, 11: 3919. [18] MIN Daomin, JI Minzun, LI Pengxin, et al.Entropy reduced charge transport and energy loss in interfacial zones of polymer nanocomposites[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2021, 28(6): 2011-2017. [19] 谢东日, 闵道敏, 刘文凤, 等. 介质击穿与界面区陷阱特性的关联[J]. 高电压技术, 2018, 44(2): 432-439. [20] 车瑞, 孙明. 基于有限元法的气体放电模拟综述[J].电气技术, 2022, 23(7): 18-25, 80. |
|
|
|