|
|
Analysis and optimization of dielectric barrier load characteristic parameters based on response surface center combination design |
CHEN Yongquan, TANG Xiongmin, LI Zhongtao |
School of Automation, Guangdong University of Technology, Guangzhou 510006 |
|
|
Abstract To take advantage of the potential of dielectric barrier discharge (DBD) load, a high-frequency pulse excitation is selected as the excitation waveforms and the load current amplitude of the first discharge as the optimization objective. Based on the method of response surface center combination design, a mathematical model is built to analyze the effects of dielectric barrier layer thickness, applied voltage amplitude, applied voltage rising and falling time and the relative permittivity on the load current amplitude of the first discharge, optimizing the characteristic parameters of dielectric barrier discharge load. The results show that the influence on the DBD load current is in descending order of dielectric barrier layer, applied voltage amplitude, applied voltage rising and falling time, the relative permittivity. Under these conditions, the maximum load current amplitude is 8.692A when the applied voltage rising and falling time is 200ns, the applied voltage amplitude is 4kV, the thickness of dielectric barrier layer is 1mm and the relative permittivity is 8.
|
Received: 09 October 2023
|
|
|
|
Cite this article: |
CHEN Yongquan,TANG Xiongmin,LI Zhongtao. Analysis and optimization of dielectric barrier load characteristic parameters based on response surface center combination design[J]. Electrical Engineering, 2024, 25(1): 17-22.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I1/17
|
[1] 黑雪婷, 高远, 窦立广, 等. 纳秒脉冲介质阻挡放电等离子体驱动CH4-CH3OH转化制备液态化学品的特性研究[J]. 电工技术学报, 2022, 37(15): 3941-3950. [2] 武海霞, 陈卫刚, 张微薇, 等. 介质阻挡放电处理水中有机污染物研究进展[J]. 水处理技术, 2018, 44(11): 19-25. [3] 肖俊, 陈荣, 雷宇, 等. 介质阻挡放电诱发185nm紫外光结合Bi2WO6/NMO催化降解CS2[J]. 合肥工业大学学报(自然科学版), 2019, 42(10): 1404-1410. [4] 商克峰, 王美威, 鲁娜, 等. 沿面/体介质阻挡放电装置的放电及臭氧生成特性[J]. 高电压技术, 2021, 47(1): 353-359. [5] BUNTAT Z, SMITH I R, RAZALI N M.Ozone generation using atmospheric pressure glow discharge in air[J]. Journal of Physics D: Applied Physics, 2009, 42(23): 235202. [6] ZHANG Cheng, SHAO Tao, WANG Ruixue, et al.A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond-and microsecond-pulse generators in helium[J]. Physics of Plasmas, 2014, 21(10): 103505. [7] LEIWEKE R J, GANGULY B N.Effects of pulsed-excitation applied voltage rise time on argon metastable production efficiency in a high pressure dielectric barrier discharge[J]. Applied Physics Letters, 2007, 90(24): 241501. [8] HENRY RIGIT A R, ALI I, BOON T C, et al. Effect of number of electrodes on electrical performance of surface dielectric barrier discharge plasma actuator[C]//2020 13th International UNIMAS Engineering Con-ference (EnCon), Kota Samarahan, Malaysia, 2020: 1-4. [9] GANEA I, MORAR R.Factors that increase the electric field of the dielectric barrier ozone gen-erators[J]. IOP Conference Series: Materials Science and Engineering, 2017, 200: 012057. [10] PAN Mingqiang, YAO Furong, LIU Jizhu, et al.Effect of magnetic field on activation performance of silicon/glass dielectric barrier discharge[C]//2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 2018: 908-912. [11] XIE Qing, GAN Wenyan, ZHANG Cheng, et al.Effect of rise time on nanosecond pulsed surface dielectric barrier discharge actuator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 346-352. [12] WANG Tahan, LIU Wenzheng, HE Kun, et al.Effects of different materials on dielectric barrier discharge characteristic[C]//2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 2020: 1-4. [13] XU Yonggang, JIANG Weiman, TANG Jie, et al.Influence of driving frequency on the argon dielectric barrier discharge excited by Gaussian voltage at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2553-2563. [14] 张泽权, 蔡新景. 基于COMSOL仿真的电力电缆局部放电检测传感器设计[J]. 电气技术, 2023, 24(4): 29-36. [15] 张增辉, 邵先军, 张冠军, 等. 大气压氩气介质阻挡辉光放电的一维仿真研究[J]. 物理学报, 2012, 61(4): 291-298. [16] 车瑞, 孙明. 基于有限元法的气体放电模拟综述[J]. 电气技术, 2022, 23(7): 18-25, 80. [17] PAN Jie, TAN Zhenyu, WANG Xiaolong, et al.Comparative study of pulsed dielectric barrier discharges in argon and nitrogen at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2015, 43(2): 557-566. [18] HAGELAAR G M, PITCHFORD L C.Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(4): 722-733. [19] YAO Congwei, CHANG Zhengshi, MU Haibao, et al.Two-dimension simulation of small scale dielectric barrier discharge in argon[C]//2015 IEEE 11th Inter-national Conference on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, NSW, Australia, 2015: 384-387. [20] LIU Shuhai, NEIGER M.Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses[J]. Journal of Physics D: Applied Physics 2001, 34(11): 1632-1638. [21] MEHANAOUI A, LAROUSSI T, MEZACHE A.New Pareto clutter parameters estimators based on log-moments and fractional negative-moments[C]//2017 Seminar on Detection Systems Architectures and Technologies (DAT), Algiers, Algeria, 2017: 1-5. |
|
|
|