|
|
Optimal configuration of photovoltaic energy storage systems in residential communities taking into account energy storage battery life decay |
SHANG Liqun1, ZHANG Jiantao1,2 |
1. College of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054; 2. DAYUN Automobile Co., Ltd, Yuncheng, Shanxi 044000 |
|
|
Abstract Configuration of photovoltaic systems in residential communities can reduce the power supply pressure of the power system, and configuration of energy storage devices can reduce the photovoltaic light abandonment rate, while realizing the temporal and spatial transfer of loads, and reducing the peak-valley difference of loads. In order to make the configuration of photovoltaic storage system in residential communities more reasonable, the influence of the number of charge/discharge and the depth of charge/discharge on the life of the storage battery is adopted, and the dynamic loss model of the storage battery is established through the improvement of the curve-fitting method and the linear segmentation processing method, to obtain a more accurate curve-fitting function and a segmented linear function that is more appropriate to the original curve. The maximum average annual net return is taken as the objective function, and the photovoltaic storage system is optimized. Finally, the photovoltaic output value and load demand value are obtained by using different weight solving methods. The multi-objective particle swarm algorithm is used to simulate the configuration of photovoltaic storage system in residential communities under different operation scenarios. The opera-tion strategy of the optical storage system under different operation scenarios is analyzed by comparison simulation. The results show that the operation of the residential district storage system is more effective in terms of economy and peak shaving under the grid-connected scenarios, and the rationality and effectiveness of the model adopted are verified, which provides a reference for the planning and construction of residential district optical storage system.
|
Received: 06 October 2023
|
|
|
|
Cite this article: |
SHANG Liqun,ZHANG Jiantao. Optimal configuration of photovoltaic energy storage systems in residential communities taking into account energy storage battery life decay[J]. Electrical Engineering, 2024, 25(2): 1-11.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I2/1
|
[1] 鲁正, 孙炜, 陈芸菲. 基于用户侧的光伏项目成本-效益分析[J]. 太阳能学报, 2021, 42(4): 209-214. [2] 王俊, 蔡兴国, 季峰, 等. 考虑新能源发电不确定性的可用输电能力风险效益评估[J]. 电力系统自动化, 2012, 36(14): 114-118. [3] 麻秀范, 王戈, 朱思嘉, 等. 计及风电消纳与发电集团利益的日前协调优化调度[J]. 电工技术学报, 2021, 36(3): 579-587. [4] 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18. [5] 刘静琨, 张宁, 康重庆. 电力系统云储能研究框架与基础模型[J]. 中国电机工程学报, 2017, 37(12): 3361-3371, 3663. [6] 董涛, 雍静, 赵瑾, 等. 含光、储、电动汽车居民小区电力负荷综合管理系统[J]. 重庆大学学报, 2021, 44(8): 45-58. [7] 王立娜, 谭丽平, 徐志强, 等. 电池储能抑制直流配电网振荡的控制策略研究[J]. 电气技术, 2022, 23(6): 42-48. [8] 张效言, 李先允. 金属加工区分层储能优化配置方法研究[J]. 电气技术, 2022, 23(1): 49-55. [9] 汤杰, 李欣然, 黄际元, 等. 以净效益最大为目标的储能电池参与二次调频的容量配置方法[J]. 电工技术学报, 2019, 34(5): 963-972. [10] YUAN Haozhe, YE Huanhuan, CHEN Yaoting, et al.Research on the optimal configuration of photovoltaic and energy storage in rural microgrid[J]. Energy Reports, 2022, 8: 1285-1293. [11] ALAM M J E, MUTTAQI K M, SUTANTO D. Mitigation of rooftop solar PV impacts and evening peak support by managing available capacity of distributed energy storage systems[J]. IEEE Transa-ctions on Power Systems, 2013, 28(4): 3874-3884. [12] 向育鹏, 卫志农, 孙国强, 等. 基于全寿命周期成本的配电网蓄电池储能系统的优化配置[J]. 电网技术, 2015, 39(1): 264-270. [13] 修晓青, 唐巍, 李建林, 等. 计及电池健康状态的源储荷协同配置方法[J]. 高电压技术, 2017, 43(9): 3118-3126. [14] 安东, 杨德宇, 武文丽, 等. 基于改进多目标蜉蝣算法的配网电池储能系统最优选址定容[J]. 电力系统保护与控制, 2022, 50(10): 31-39. [15] 李欣, 卢景涛, 肖林润, 等. 高速铁路列车长大坡道混合储能系统容量优化配置[J]. 电工技术学报, 2023, 38(20): 5645-5660. [16] 申江卫, 高承志, 舒星, 等. 基于迁移模型的锂离子电池宽温度全寿命SOC与可用容量联合估计[J]. 电工技术学报, 2023, 38(11): 3052-3063. [17] 李琳. 锂离子电池荷电状态及健康状态估计研究[D]. 北京: 北京林业大学, 2020. [18] 顾菊平, 蒋凌, 张新松, 等. 基于特征提取的锂离子电池健康状态评估及影响因素分析[J]. 电工技术学报, 2023, 38(19): 5330-5342. [19] ATTIA P M, GROVER A, JIN N, et al.Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402. [20] 桂强, 史一炜, 周云, 等. 考虑储能动态运行特性的充电站光储容量优化配置模型[J]. 电力建设, 2021, 42(5): 90-99. [21] ZHOU Yun, XU Ran, YUN Jingyang, et al.Self-optimal piecewise linearization based network power flow constraints in electrical distribution system optimization[C]//2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 2020: 1-3. [22] 王泽. 基于双层决策模型的用户侧储能优化配置方法[D]. 太原: 太原理工大学, 2021. [23] 闫群民, 董新洲, 穆佳豪, 等. 基于改进多目标粒子群算法的有源配电网储能优化配置[J]. 电力系统保护与控制, 2022, 50(10): 11-19. [24] GUI Qiang, SU Hao, FENG Donghan, et al.A novel linear battery energy storage system (BESS) life loss calculation model for bess-integrated wind farm in scheduled power tracking[C]//8th Renewable Power Generation Conference (RPG 2019), Shanghai, China, 2019: 1-8. |
|
|
|