|
|
A method of fault location for transmission line based on frequency selection |
ZHOU Zhitong1,2, CHEN Yongqi1, HUANG Huang2, JIANG Liang1 |
1. Datang Hydropower Science & Technology Research Institute Co., Ltd, Chengdu 610036; 2. School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu 610500 |
|
|
Abstract In order to solve the problem that the high frequency of traveling wave makes the wave head amplitude lower, which leads to the failure of fault location, this paper proposes a frequency selection based traveling wave fault location method by analyzing the effect of frequency on the traveling wave head amplitude. Firstly, the empirical mode decomposition (EMD) of the fault traveling wave signal is done to obtain the intrinsic mode function (IMF) components of different frequency bands. The Hilbert transform and first-order differentiation are done on the IMF components, and the amplitude-time curves corresponding to the different high-frequency IMF components are extracted and plotted, so that the traveling wave head can be detected by selecting the high-frequency IMF components with larger amplitude of the wave head and lower frequency. Thus it reduces the impact of signal attenuation caused by excessive travelling wave frequency, and ensures the accuracy of the wave head detection. Finally, the fault location is completed the three-terminal traveling wave location algorithm. Simulation results show that the relative error of the method proposed in this paper is basically within 0.3%, and the absolute error is within 0.9km, which has higher location accuracy compared with the traditional instantaneous frequency location method.
|
Received: 12 October 2023
|
|
|
|
Cite this article: |
ZHOU Zhitong,CHEN Yongqi,HUANG Huang等. A method of fault location for transmission line based on frequency selection[J]. Electrical Engineering, 2024, 25(2): 31-36.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I2/31
|
[1] 陈玉林, 张杰, 黄涛, 等. 高压直流输电线路行波色散及行波测距研究[J]. 电气技术, 2021, 22(12): 8-13. [2] 武占国, 乔宇峰, 李慧勇, 等. 基于保护信息的变电站行波测距可靠性提升[J]. 电气技术, 2021, 22(8): 62-68. [3] 王尧, 马桐桐, 赵宇初, 等. 基于电磁辐射时延估计的串联光伏直流电弧故障定位方法[J]. 电工技术学报, 2023, 38(8): 2233-2243. [4] 邓丰, 徐帆, 曾哲, 等. 基于多源暂态信息融合的单端故障定位方法[J]. 电工技术学报, 2022, 37(13): 3201-3212. [5] 张健磊, 高湛军, 陈明, 等. 考虑复故障的有源配电网故障定位方法[J]. 电工技术学报, 2021, 36(11): 2265-2276. [6] 刘树鑫, 卓裕, 李津, 等. 基于微型同步相量单元数据的配电线路故障测距方法[J]. 电气技术, 2020, 21(10): 63-70. [7] 雷朝煜, 郝良收, 戴甲水, 等. 高压直流输电线路故障定位研究综述[J]. 电力系统保护与控制, 2022, 50(11): 178-187. [8] 张建文, 周鹏, 陈焕栩. 基于改进阻抗法的单相接地故障测距仿真[J]. 电测与仪表, 2018, 55(3): 84-87. [9] 郑秀玉, 丁坚勇, 黄娜. 输电线路单端故障定位的阻抗-行波组合算法[J]. 电力系统保护与控制, 2010, 38(6): 18-21. [10] TZELEPIS D, DYSKO A, FUSIEK G, et al.Single-ended differential protection in MTDC networks using optical sensors[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1605-1615. [11] 何佳伟, 李斌, 李晔, 等. 多端柔性直流电网快速方向纵联保护方案[J]. 中国电机工程学报, 2017, 37(23): 6878-6887, 7078. [12] SNEATH J, RAJAPAKSE A D.Fault detection and interruption in an earthed HVDC grid using ROCOV and hybrid DC breakers[J]. IEEE Transactions on Power Delivery, 2016, 31(3): 973-981. [13] 范春菊, 姜军, 郭煜华, 等. 输电线路行波故障测距技术的发展与应用[J]. 电力系统及其自动化学报, 2017, 29(4): 129-134. [14] 吴阳阳, 舒勤, 韩晓言. 基于S变换的改进双端法配电网故障测距[J]. 计算机仿真, 2017, 34(11): 67-72. [15] 隋涛, 史小雪, 刘欣, 等. 基于希尔伯特-黄变换的高压直流输电故障测距算法的仿真研究[J]. 科学技术与工程, 2018, 18(4): 279-285. [16] 陈惠, 莫付江, 许梦素, 等. 基于VMD和柔性形态学的输电线路故障测距方法[J]. 电测与仪表, 2018, 55(2): 20-24. [17] 朱柏寒, 陈羽, 马金杰. 基于波前陡度的输电线路单端行波故障测距[J]. 电力系统自动化, 2021, 45(9): 130-135. [18] 李泽文, 曾祥君, 徐晓菁, 等. 输电线路双端行波故障定位新算法[J]. 电力系统自动化, 2006, 30(15): 40-43. |
|
|
|