|
|
Prediction of state of health for lithium battery based on health feature screening and GWO-LSSVM |
MA Jun1, WAN Junjie2 |
1. Jiangsu Acrel Electrical Manufacturing Co., Ltd, Jiangyin, Jiangsu 214405; 2. Acrel Electric Co., Ltd, Shanghai 201801 |
|
|
Abstract State of health (SOH) prediction for lithium battery is one of the most important functions of battery management system (BMS). Accurate and effective prediction of lithium battery SOH can effectively improve the utilization rate of equipment and ensure system stability. In order to improve the accuracy of prediction, this paper proposes a SOH prediction method for lithium batteries based on health feature screening and grey wolf optimizer (GWO)-least square support vector machine (LSSVM). Firstly, grey relational analysis (GRA) is used to calculate the grey relational degrees of each health feature relative to the SOH of lithium batteries, and the grey correlation degrees are sorted to determine the main health characteristics of SOH prediction. Then, aiming at the problem that the parameters of LSSVM model need to be selected by human experience, the grey wolf optimization with good optimization performance is used to optimize the parameters and build the GWO-LSSVM model. Finally, the model is trained and tested on the basis of NASA data set, and the evaluation index values of back propagation (BP), LSSVM and particle swarm optimization (PSO)-LSSVM models are compared and analyzed to prove the effectiveness of the proposed method.
|
Received: 19 October 2023
|
|
|
|
Cite this article: |
MA Jun,WAN Junjie. Prediction of state of health for lithium battery based on health feature screening and GWO-LSSVM[J]. Electrical Engineering, 2024, 25(2): 37-44.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I2/37
|
[1] 余佩雯, 郁亚娟, 常泽宇, 等. 相关向量机预测锂离子电池剩余有效寿命[J]. 电气技术, 2023, 24(2): 1-5. [2] 周才杰, 汪玉洁, 李凯铨, 等. 基于灰色关联度分析-长短期记忆神经网络的锂离子电池健康状态估计[J]. 电工技术学报, 2022, 37(23): 6065-6073. [3] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression[J]. Energy, 2020, 203: 117852. [4] 王义, 刘欣, 高德欣. 基于BiLSTM神经网络的锂电池SOH估计与RUL预测[J]. 电子测量技术, 2021, 44(20): 1-5. [5] MA Guijun, ZHANG Yong, CHENG Cheng, et al.Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J]. Applied Energy, 2019, 253: 113626. [6] 肖仁鑫, 李沛森, 李晓宇, 等. 基于蚁群神经网络算法的电池健康状态估计[J]. 电源技术, 2017, 41(6): 916-919. [7] 李强龙, 孙建瑞, 赵坤, 等. 基于IALO-SVR的锂电池健康状态预测[J]. 电子测量与仪器学报, 2022, 36(1): 204-211. [8] 姚远, 陈志聪, 吴丽君, 等. 一种基于改进网格搜索和广义回归神经网络的锂离子电池健康状态估计方法[J]. 电气技术, 2021, 22(7): 32-37. [9] 顾菊平, 蒋凌, 张新松, 等. 基于特征提取的锂离子电池健康状态评估及影响因素分析[J]. 电工技术学报, 2023, 38(19): 5330-5342. [10] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. [11] 彭寒梅, 彭紫洁, 苏永新, 等. 基于LSSVM的电-气区域综合能源系统短期可靠性评估[J]. 电力系统自动化, 2023, 47(4): 69-77. [12] 肖汉斌, 熊楚宸, 祝锋, 等. 基于ICWGT和灰色关联分析法的起重机安全评价[J]. 上海海事大学学报, 2020, 41(2): 117-122. |
|
|
|