|
|
Grounding characteristics analysis of transmission line towers in mountainous regions based on finite element method |
ZHENG Dongfang, CHEN Liang |
Shangqiu Power Supply Company, State Grid He’nan Electric Power Co., Ltd, Shangqiu, He’nan 476000 |
|
|
Abstract In order to conduct in-depth research on the grounding characteristics of transmission line towers in mountainous regions, finite element method (FEM) is used to model the tower foundation, grounding system, and soil medium in detail. The grounding characteristics under different grounding models and operating conditions are analyzed. The results show that, the soil resistivity and the length of the grounding conductor have a significant impact on the grounding resistance; the soil environment where the grounding conductor is located has a certain impact on the grounding resistance, and it can be considered to implement resistance reduction measures around the grounding conductor; under high-frequency conditions, as the impedance of the conductor increases, the difficulty of high-frequency current propagation along the conductor increases, making it easier for the current to dissipate near the current injection point. In engineering, resistance reduction measures can be considered near the current injection point. This study can provide reference for the calculation of surface potential and the design of lightning protection and resistance reduction in practical engineering.
|
Received: 11 April 2024
|
|
|
|
Cite this article: |
ZHENG Dongfang,CHEN Liang. Grounding characteristics analysis of transmission line towers in mountainous regions based on finite element method[J]. Electrical Engineering, 2024, 25(8): 47-52.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I8/47
|
[1] 张文锋, 李志伟, 张国建, 等. 山区35kV架空线路雷击特性仿真分析[J]. 电气技术, 2022, 23(9): 19-28. [2] 朱道俊, 张文锋, 李国彬. 基于熵权和TOPSIS法的山区35kV架空线路雷击风险评估[J]. 电气技术, 2022, 23(8): 23-30. [3] 张恒志, 扎西曲达, 杨浩, 等. 西藏电网220kV线路雷害故障及防雷措施分析[J]. 电气技术, 2020, 21(4): 122-124. [4] 潘文霞, 刘铜锤, 王兵, 等. 分层土壤任意块状基础的接地计算方法[J]. 电工技术学报, 2016, 31(7): 145-151. [5] 于晓翔. 选择性补偿法在线路杆塔接地测试中的应用[J]. 电气技术, 2016, 17(2): 80-82. [6] 刘炜, 尹乙臣, 潘卫国, 等. 直流动态杂散电流在分层介质中的扩散模型[J]. 电工技术学报, 2021, 36(23): 4864-4873. [7] 方乙君. 云霄背靠背换流站接地系统设计[J]. 电气技术, 2023, 24(10): 39-43. [8] 刘洋, 付晓东. 变电站接地引下线缺陷筛查方法与技术[J]. 电气技术, 2022, 23(1): 95-101. [9] 王泽忠, 石雨鑫. 三维电场多极子曲面边界元方法研究[J]. 电工技术学报, 2018, 33(24): 5797-5804. [10] 王泽忠, 樊亮, 夏天, 等. 基于边界元法的输电杆塔上分裂导线表面电场数值计算[J]. 高电压技术, 2017, 43(12): 3835-3842. [11] SILVESTER P P, FERRARI R L.Finite elements for electrical engineers[M]. Cambridge, UK: Cambridge University Press, 1996. [12] 齐磊, 崔翔, 李慧奇. 变电站接地网的频域有限元方法[J]. 中国电机工程学报, 2007, 27(6): 62-66. [13] 金建铭. 电磁场有限元方法[M]. 王建国, 译. 西安: 西安电子科技大学出版社, 2001. [14] 陈亮, 林圣, 何正友. 基于有限元方法的高速铁路隧道综合接地系统电磁特性分析[J]. 中国电机工程学报, 2016, 36(增刊1): 222-232. [15] 佟继春, 田峻, 郭艳军, 等. 山区输电杆塔接地电阻特性分析[J]. 智慧电力, 2018, 46(1): 71-76. [16] 沈刚, 董发勤. 导电混凝土及其发展趋势[J]. 工业建筑, 2004, 34(3): 62-64. [17] 唐祖全, 钱觉时, 杨再富. 导电混凝土研究进展[J]. 重庆建筑大学学报, 2006, 28(6): 135-139. |
|
|
|