|
|
Low-frequency oscillation suppression strategy based on the energy function and improved virtual synchronization control |
LIU Wei1, LIU Xinyue1,2 |
1. College of Electrical and Information Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318; 2. Hainan Sanya Oil and Gas Research Institute, Northeast Petroleum University, Sanya, Hainan 572000 |
|
|
Abstract The power grid’s stability has substantially declined as a result of the growing popularity of renewable energy sources and the scale at which power electronic equipment is being installed. In light of this, virtual synchronous generator (VSG) technology has drawn a lot of attention lately. Nevertheless, the virtual rotor speed of the VSG experiences abrupt variations when the grid connection of synchronous generators is disrupted, leading to notable oscillations in the output of the system. This research suggests an enhanced approach to VSG regulation in order to reduce these variations. The lead and lag loop-based proposed VSG control has more power and inertia. The idea of an energy function is presented, which provides a fresh approach to control. How the VSG settings affect the system’s low-frequency oscillations is analyzed using the energy function. The output energy is controlled, energy transfer between the VSG and the system is lessened, and the low-frequency oscillations in renewable energy generating systems are more effectively suppressed by modifying the VSG settings. Matlab/Simulink and a variety of semi-physical modeling platforms are used for simulation to prove that this strategy can successfully suppress low-frequency oscillations in renewable energy systems.
|
Received: 18 March 2024
|
|
|
|
Cite this article: |
LIU Wei,LIU Xinyue. Low-frequency oscillation suppression strategy based on the energy function and improved virtual synchronization control[J]. Electrical Engineering, 2024, 25(9): 1-8.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I9/1
|
[1] 孙佳航, 冯忠楠, 黄景光, 等.基于改进VSG的风光储联合发电系统低电压穿越控制策略[J/OL]. 电网技术, 1-14 [2024-05-10]. https://doi.org/10.13335/j.1000-3673.pst.2022.0717. [2] 许杨, 吕雪松, 张科乾, 等. 柔性光伏电池阵列物理参数特性建模[J]. 电气技术, 2023, 24(9): 49-54. [3] POUNGDOKMAI A, POLMAI S.Stabilization of power system using improved virtual inertia of virtual synchronous generator[C]//2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 2022: 1-5. [4] 谢家安. 基于同步挤压小波变换的抗混叠低频振荡模态参数识别[J]. 电气技术, 2019, 20(12): 28-34, 40. [5] 魏译帆, 邢建春. 基于虚拟同步发电机双模式切换的柴储微电网无差调频控制策略[J]. 电气技术, 2022, 23(11): 13-20. [6] 朱军, 曲玉博, 刘鹏辉, 等. 电网频率小扰动下虚拟同步发电机统一模型关键参数辨识[J]. 电气技术, 2022, 23(7): 26-33, 41. [7] 周美权, 徐晔, 黄克峰, 等. 虚拟同步发电机带脉冲负载运行特性研究[J]. 电气技术, 2022, 23(6): 59-68. [8] 张冠锋, 杨俊友, 王海鑫, 等. 基于虚拟同步机技术的风储系统协调调频控制策略[J]. 电工技术学报, 2022, 37(增刊1): 83-92. [9] 朱爱华, 赵涛, 徐宏健, 等. 基于虚拟同步发电机控制的T型三电平并网逆变器研究[J]. 电气技术, 2019, 20(11): 11-15. [10] 刘欣, 郭志博, 贾焦心, 等. 基于序阻抗的虚拟同步发电机并网稳定性分析及虚拟阻抗设计[J]. 电工技术学报, 2023, 38(15): 4130-4146. [11] 纪君奇, 杨黎晖, 马西奎. 基于虚拟同步发电机控制的并网逆变器切换型振荡及其非光滑分岔特性[J/OL]. 电工技术学报, 1-14 [2024-04-23]. https://doi.org/10.19595/j.cnki.1000-6753.tces.232024. [12] BABAYOMI O, LI Zhen, ZHANG Zhenbin.Dis- tributed secondary frequency and voltage control of parallel-connected VSCs in microgrids: a predictive VSG-based solution[J]. CPSS Transactions on Power Electronics and Applications, 2020, 5(4): 342-351. [13] ZHANG Xing, GAO Qian, HU Yuhua, et al.Active power reserve photovotaic virtual synchronization control technology[J]. Chinese Journal of Electrical Engineering, 2020, 6(2): 1-6. [14] 张宇华, 赵晓轲, 方艺翔. 独立微网中虚拟同步发电机的频率自恢复控制策略[J]. 电网技术, 2019, 43(6): 2125-2131. [15] 程启明, 余德清, 程尹曼, 等. 基于自适应旋转惯量的虚拟同步发电机控制策略[J]. 电力自动化设备, 2018, 38(12): 79-85. [16] 徐菘, 杨博, 刘浩, 等. 一种提高虚拟同步机电流质量的电压-电流级联闭环控制方案[J]. 电工技术学报, 2024, 39(6): 1871-1885. [17] 陈来军, 王任, 郑天文, 等. 基于参数自适应调节的虚拟同步发电机暂态响应优化控制[J]. 中国电机工程学报, 2016, 36(21): 5724-5731, 6014. [18] 何安明, 赵鑫, 吴立刚, 等. 基于双向长短期记忆网络的区域电网新能源消纳预测算法[J]. 电气技术, 2023, 24(3): 23-30. [19] MAO Meiqin, HU Jian, DING Yong, et al.Multi- parameter adaptive power allocation strategy for microgrid with parallel PV/battery-VSGs[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019: 2105-2111. [20] 陈乾, 张雪敏, 魏韡, 等. 基于端口能量的自律分散附加阻尼控制[J]. 电力系统自动化, 2017, 41(10): 29-36. [21] 刘洪波, 于汉清. 含双馈风机接入的电力系统送端暂态稳定性研究[J]. 电气自动化, 2024, 46(1): 14-19. [22] 孙正龙. 弹性力学映射的电力系统能量结构及其在低频振荡分析中的应用[D]. 吉林: 东北电力大学, 2018. [23] 盛师贤. 应用附加阻尼抑制新能源接入后电网低频振荡控制策略研究[D]. 成都: 西南交通大学, 2021. |
|
|
|