|
|
Power quality steady-state index prediction based on variational mode decomposition-gated recurrent unit-sparrow search algorithm |
HUANG Huahong |
College of Electrical and Information Engineering, Hu’nan University of Technology, Zhuzhou, Hu’nan 412007 |
|
|
Abstract The accurate prediction of power quality helps to ensure the safe and reliable operation of the power grid. This article proposes a hybrid model based on variational mode decomposition (VMD), gated recurrent unit (GRU), and sparrow search algorithm (SSA) for predicting steady-state index of power quality. Firstly, the VMD is used to decompose historical power quality data. Then the parameters of GRU neural network is optimize based on SSA, and the decomposed power quality components are input into the GRU neural network. Finally, the predicted values of each component are added together to obtain the predicted steady-state index of power quality. The model is validated using power quality data from a monitoring point, and compared with GRU and VMD-GRU models. The results show that the proposed prediction model has a mean absolute percentage error of less than 7%, indicating better prediction performance.
|
Received: 18 March 2024
|
|
|
|
Cite this article: |
HUANG Huahong. Power quality steady-state index prediction based on variational mode decomposition-gated recurrent unit-sparrow search algorithm[J]. Electrical Engineering, 2024, 25(9): 9-13.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I9/9
|
[1] 林海雪. 电能质量指标的完善化及其展望[J]. 中国电机工程学报, 2014, 34(29): 5073-5079. [2] 杨鹏兴. 基于深度学习的光伏并网系统电能质量研究[D]. 太原: 山西大学, 2023. [3] 姚远, 陈志聪, 吴丽君, 等. 一种基于改进网格搜索和广义回归神经网络的锂离子电池健康状态估计方法[J]. 电气技术, 2021, 22(7): 32-37. [4] 朱昶胜, 李岁寒. 基于改进果蝇优化算法的随机森林回归模型及其在风速预测中的应用[J]. 兰州理工大学学报, 2021, 47(4): 83-90. [5] 赵洋, 王瀚墨, 康丽, 等. 基于时间卷积网络的短期电力负荷预测[J]. 电工技术学报, 2022, 37(5): 1242-1251. [6] 徐帅, 刘丹丹. 基于时间序列组合模型的电力负荷预测[J]. 电子设计工程, 2023, 31(23): 1-6. [7] 江晶晶, 窦真兰, 杨海涛, 等. 贫乏信息下基于深度迁移学习的智慧建筑负荷预测方法[J]. 电气技术, 2022, 23(5): 55-61, 72. [8] 杨戈辉, 赵桐浠, 姚鑫, 等. 基于健康指数和非等间隔灰色预测的重载铁路牵引变压器状态评估方法[J]. 电气技术, 2023, 24(11): 10-17. [9] 林怀德, 张刚, 郭启波, 等. 联合灰色模型和神经网络的短期电力负荷预测[J]. 微型电脑应用, 2022, 38(3): 110-113. [10] 陈轩伟. 基于BP-QR模型的负荷区间预测[J]. 电气技术, 2022, 23(4): 14-17, 24. [11] 梁郑秋, 郝亮亮, 周艳真, 等. 基于卷积神经网络的核电多相无刷励磁系统旋转整流器故障诊断[J]. 电工技术学报, 2023, 38(20): 5458-5472. [12] 王步华, 朱劭璇, 熊浩清, 等. 基于长短期记忆神经网络的检修态电网暂态稳定评估方法[J]. 电气技术, 2023, 24(1): 29-35, 43. [13] 王琛, 王颖, 郑涛, 等. 基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测[J]. 电工技术学报, 2022, 37(7): 1789-1799. [14] 闫帆, 李傲燃. 基于集合经验模态分解和优化支持向量机的风速预测模型[J]. 黑龙江电力, 2023, 45(5): 402-406. [15] 龚丹丹. 基于VMD-ICOA-BiLSTM混合模型的日前电价预测[J]. 电气技术, 2023, 24(11): 28-34. [16] 李志川, 兰生, 魏柯. 基于MRSVD-GRU的混合三端特高压直流输电线路单极接地故障定位方法[J]. 电气技术, 2023, 24(3): 1-8, 63. [17] 董懿飞, 舒胜文, 陈诚, 等. 基于红外图像分割与SSA-SVM的复合绝缘子缺陷检测方法[J]. 电气技术, 2021, 22(11): 73-79. |
|
|
|