|
|
Fault Diagnosis for a Type of Electrical System with Noise Via Compressed Sensing |
Ye Beilin1, Liang Kaihao2, Xiong Pingyuan3 |
1. Polytechnic School of Conghua, Guangzhou 510920; 2. Department of Mathematics, Zhongkai University of Agri. & Engi.,Guangzhou 510225; 3. Faculty of Mechanical & Electrical Engineering, Zhongkai University of Agri. & Engi.,Guangzhou 510225 |
|
|
Abstract To tackle the problem of fault diagnosis in electrical systems with noise, a diagnosis method based on compressed sensing was proposed, which regarded fault diagnosis as a mapping from fault message set to fault types. According to such principle, a l0 norm minimization model for fault diagnosis was established, and it was transformed to l1 norm minimization. To solve the model, constructed a measurement matrix satisfying Gaussian distribution firstly, and then solved l1 norm minimization problem using IRLS algorithm to recover sparse fault signal, and finally decided fault types according to fault signal. Fault signal is exactly recovered after 3 iterations in this method; moreover, the error between setting and recovered signal is stably converged at 1%.
|
Received: 18 August 2015
Published: 18 August 2015
|
|
|
|
Cite this article: |
Ye Beilin,Liang Kaihao,Xiong Pingyuan. Fault Diagnosis for a Type of Electrical System with Noise Via Compressed Sensing[J]. Electrical Engineering, 2015, 16(8): 29-33.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2015/V16/I8/29
|
[1] 张龙, 陈宸, 韩宁, 等. 压缩感知理论中的建筑电气系统故障诊断[J]. 智能系统学报, 2014, 9(2): 204-209. [2] 龚瑞昆, 马亮, 赵延军, 等. 基于量子神经网络信息融合的变压器故障诊断[J]. 电力系统保护与控制, 2011, 39(23): 79-84, 88. [3] 尹金良, 朱永利, 俞国勤, 等. 基于高斯过程分类器的变压器故障诊断[J]. 电工技术学报, 2013, 28(1): 158-164. [4] 崔江, 王友仁. 基于支持向量机与最近邻分类器的模拟电路故障诊断新策略[J]. 仪器仪表学报, 2010, 31(1): 45-50. [5] 韩安太, 郭小华, 廖忠, 等. 基于压缩感知理论的农 业害虫分类方法[J]. 农业工程学报, 2011, 27(6): 203-207. [6] 许志强. 压缩感知[J]. 中国科学:数学, 2012(9): 865-877. [7] Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223. [8] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. [9] 夏帆, 倪青山. 基于分布拟合的异方差检验[J]. 数量经济技术经济研究, 2012(8): 114-123. [10] Daubechies I, Devore R, Fornasier M A. Iteratively reweighted least squares minimization for sparse recovery[J]. Communications on Pure and Applied Mathematics, 2010, 63(1): 1-38. [11] 王英英, 罗毅, 涂光瑜, 等. 电力系统连锁故障的关联模型[J]. 电工技术学报, 2012(2): 204-209. [12] 郭金叶, 佘维, 李江林, 等. 一种基于EFPN的电力系统故障诊断方法[J]. 电力系统保护与控制, 2012(14): 10-15. [13] 尹项根, 陈庆前, 王博, 等. 基于四层集合模型的复杂电力系统脆弱性评估体系[J]. 电工技术学报, 2013, 28(1): 225-233. [14] 曾庆锋, 何正友, 杨健维. 基于有色Petri网的电力系统故障诊断模型研究[J]. 电力系统保护与控制, 2010, 38(14): 5-11, 127. [15] 刘友波, 胡斌, 刘俊勇, 等. 电力系统连锁故障分析理论与应用(一)——相关理论方法与应用[J]. 电力系统保护与控制, 2013(9): 148-155. [16] 曹玉苹, 田学民. 基于SVM和Kalman预测的非线性系统故障预报[J]. 控制与决策, 2009, 24(3): 477-480. |
|
|
|