|
|
Research of Short-Term Load Forecasting Model for Electrical Vehicle Charging Stations based on PSO-SNN |
Wang Zhe1, Dai Bingqi1, Li Xiangdong2 |
1. Qingdao University, Qingdao, Shandong 266071; 2. Maintenance Company of Shandong Power Company, Ji’nan 250000 |
|
|
Abstract The load characteristic of the electric vehicle charging station is analyzed based on the weather forecast data and measured power data. A short-term load forecasting model for electrical vehicle charging stations based on particle swarm optimized spike neural network is built in this paper. Spike neural network encode information in the timing of single spike, making it with strong calculating ability, large information capacity and good real time capability. Verifies with simulation example, the errors of prediction model proposed in this paper are less than the traditional BP-NN model for 8.59%、9.28%、12.06% and 8.72% respectively in four seasons, so the model has a better prediction accuracy.
|
Published: 13 January 2016
|
|
|
|
Cite this article: |
Wang Zhe,Dai Bingqi,Li Xiangdong. Research of Short-Term Load Forecasting Model for Electrical Vehicle Charging Stations based on PSO-SNN[J]. Electrical Engineering, 2016, 17(1): 46-50.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2016/V17/I1/46
|
[1] 陈良亮, 张浩, 倪峰, 等. 电动汽车能源供给设施建设现状与发展探讨[J]. 电力系统自动化, 2011, 35(14): 11-17. [2] 徐立中, 杨光亚, 许昭, 等. 电动汽车充电负荷对丹麦配电系统的影响[J]. 电力系统自动化, 2011, 35(14): 18-23. [3] 雷黎, 刘权彬. 电动汽车使用对电网负荷曲线的影响初探[J]. 电机技术, 2000(1): 37-39. [4] 廖旎焕, 胡智宏, 马莹莹, 等. 电力系统短期负荷预测方法综述[J]. 电力系统保护与控制, 2011, 39(1): 147-152. [5] 康重庆, 夏清, 刘梅. 电力系统负荷预测[M]. 北京:中国电力出版社, 2007. [6] 牛东晓, 曹树华, 卢建昌, 等. 电力负荷预测技术及其应用[M]. 北京: 中国电力出版社, 1998. [7] 范美强, 廖维林, 吴伯荣, 等. 电动车用MH-Ni电池温度特性研究[J]. 电池工业, 2004, 9(6): 287-289. [8] 张庆, 李革臣. 锂离子电池充放电特性的研究[J]. 自动化技术与应用, 2008, 27(12): 107-109. [9] 何杰, 刘霞, 陈一锴, 等. 恶劣天气路面条件对行车安全的影响[J]. 交通运输工程学报, 2011, 11(1): 58-63. [10] Bharatg A, Maria P. Next Generation artificial vision systems:Reverse engineering the human visual system[M]. london: aretch house, 2008. [11] Dayan P, Abbott L. Theoretical neuroscience: Com- putational and mathematical modeling of neural systems[M]. massachusetts: mit press, 2001. [12] Kulkarni S, Sishaj PS, Sundareswaran K. A spiking neural network (SNN) forecast engine for short- termelectrical load forecasting[J]. Applied Soft Com- puting, 1996, 13(1): 3628-3635. [13] 杨淑莹, 张桦. 群体智能与仿生计算-Matlab技术实现[M]. 北京: 电子工业出版社, 2012. |
|
|
|