|
|
Windows and Interpolated FFT Algorithm for Precision Phase Measurement Method Research based on Frequency Estimation with the Method of Root-MUSIC |
Wang Maofei, Bu Jing, Hou Yang |
Institute of Automation, Nanjing University of Science & Technology, Nanjing 210094 |
|
|
Abstract When the high precision phase measurement is made for the field of micro grid, the accuracy of the interpolation polynomial fitting formula formed by the use of the Windows and Interpolation FFT algorithm decreases significantly under the interference of the inter-harmonic, which will decrease the accuracy of phase measurement. In order to solve the problem above, an improved Windows and Interpolation FFT algorithm is proposed in this paper. To obtain the precise frequency of the fundamental harmonic by the use of the Root-MUSIC algorithm, getting the two corrected variables, and the wrong variables in the fitting formula above caused by long range and short range spectrum leakage is fixed. Based on the corrected variables above, the variable in phase correction formula is fixed meanwhile and the precise phase measurement can be achieved. The simulation results show that the algorithm can precisely estimate the frequency of the harmonic under the inter-harmonic disturbance, which has a high accuracy of phase measurement, and anti-noise interference ability of the proposed algorithm is strong.
|
Published: 22 March 2016
|
|
|
|
Cite this article: |
Wang Maofei,Bu Jing,Hou Yang. Windows and Interpolated FFT Algorithm for Precision Phase Measurement Method Research based on Frequency Estimation with the Method of Root-MUSIC[J]. Electrical Engineering, 2016, 17(3): 36-40.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2016/V17/I3/36
|
[1] 林海雪. 电力系统的间谐波来源及其影响[J]. 电源技术应用, 2010, 13(5): 1-6. [2] 张伏生, 耿中行, 葛耀中. 电力系统谐波分析的高精度FFT算法[J]. 中国电机工程学报, 1999, 19(3): 64-67. [3] 牛胜锁, 梁志瑞, 张建华, 等. 基于三谱线插值FFT的电力谐波分析算法[J]. 中国电机工程学报, 2012, 32(16): 130-136. [4] Andria G, Savino M, Trotta A. Windows and Interpol- ation algorithms to improve electric measurement accuracy[J]. IEEE Transactions on Instrumentation and Measurement, 1989, 38(8): 856-863. [5] 邵英, 李晓明, 张晓明. 基于插值FFT和多信号分类法的间谐波参数检测[J]. 海军工程大学学报, 2011, 23(4): 53-59. [6] 曾泽昊, 余有灵, 许维胜. 一种减小频谱泄漏的同步化算法[J]. 电测与仪表, 2005(11): 12-14, 8. [7] 王洪希, 杨卫东, 田伟. 基于高阶累计量Root- MUSIC法和Prony法的轧辊偏心谐波参数估计[J]. 电子学报, 2014, 42(11): 2213-2218. [8] 蔡涛, 段善旭, 刘方锐. 基于实值MUSIC算法的电力谐波分析方法[J]. 电工技术学报, 2009, 24(12): 149-155. [9] 张经纬, 周念成, 杨芳, 等. 基于四阶累积量的多信号分类法间谐波检测研究[J]. 继电器, 2008, 36(7): 19-23, 28. [10] 李新, 程纯东, 张淮清. 基于实值Root-MUSIC和Prony算法的间谐波参数估计[J]. 电力自动化设备, 2012, 32(11): 56-59, 71. [11] 张滨生, 喻乐, 和敬涵, 等. 基于快速TLS-ESPRIT的间谐波检测算法[J]. 电力自动化设备, 2011, 31(2): 26-31. [12] 冯宝, 樊强, 易浩勇, 等. 基于三线性分解的电力系统谐波与间谐波参数估计算法[J]. 中国电机工程学报, 2013, 33(25): 173-179, 25. |
|
|
|