|
|
Electric Field Simulation for ±1100kV DC Valve Hall Fittings |
Jia Wei, Niu Wanyu, Wang Bangtian, Huang Yekuang, Wang Jinfang |
XJ Group Corporation, Xuchang, He’nan 461000 |
|
|
Abstract The valve hall fittings as HVDC converter stations valve hall equipment electrical connections and fixing devices , connections and combinations converter station valve hall all types of power system devices to transfer mechanical, electrical load and achieve some kind of protection. It is important to study distribution simulation of its surface electric field on account of a direct impact on its surface corona valve hall and its equipment surface electric field. Based on Infolytica ElecNet electric field simulation software, we investigated air packet size, electrode length. The results show that: with the increase of the air bag, the surface electric field decreases, until tends to a constant value; it has nothing to do with the length of the electrode. According to the research results,we provide electric field simulation results of ±1100kV DC valve hall fittings busbar coupler, the results have an important role in guiding to develop ±1100kV UHV DC transmission project valve hall fittings.
|
Published: 27 July 2016
|
|
|
|
[1] 李丹, 张义军, 吕伟涛. 风力发电机叶片姿态与雷击概率关系模拟分析[J]. 应用气象学报, 2013, 24(5): 585-594. [2] 刘振亚. 特高压直流电气设备[M]. 北京: 中国电力出版社, 2009. [3] 赵畹君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2004. [4] 浙江大学直流输电教研室. 直流输电[M]. 北京: 水利电力出版社, 1985. [5] Haeuslerm, Koelschh, Ramaswamiv. 特高压直流输电设备的设计[J]. 中国电力, 2006, 39(2): 28-32. [6] 国家电网. ±1100千伏特高压直流输电工程设备研制技术规范[Z]. 北京, 2011. [7] 海基科技. INFOLYTICA软件概述[J]. CAD/CAM与制造业信息化, 2012(4): 42-45. [8] Han B X, Von Reden K F, Roberts M L, et al. Electromagnetic field modeling and ion optics calculations for a continuous-flow AMS system[J]. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions With Materials and Atoms, 2007, 259(1): 111-117. [9] Torkaman H, Afjei E, Gorgani A, et al. External rotor SRM with high torque per volume: design, analysis, and experiments[J]. Electrical Engineering, 2013, 95(4): 393-401. [10] 王仲奕, 王琪, 陈青. 染污复合绝缘子交流电场特性研究[J]. 高压电器, 2010, 46(4): 25-30. [11] 杨茜, 郭天兴, 刘海, 等. 110kV电流互感器电场分析与绝缘结构改进[J]. 电力电容器与无功补偿, 2010, 31(1): 31-34. [11] Faculty of engineering sicences electrical power transmission. Corona test of a 800kV busbar (DC Test)-Test Report 0708-23[R]. Duisburg, Germany, 2007. [12] Faculty of engineering sicences electrical power transmission. Corona tests on 800kV busbar connectors (DC Test)-Test Report 0802-006[R]. Duisburg, Germany, 2008. [13] Faculty of engineering sicences electrical power transmission. Corona tests on 800kV straight busbar connector and busbar support (DC Test)-Test Report 0804-009-02[R]. Duisburg, Germany, 2008. [14] Faculty of engineering sicences electrical power transmission. Corona tests on 800kV hexagonal spacer (DC Test)-Test Report 0804-009-03[R]. Duisburg, Germany, 2008. [15] Faculty of engineering sicences electrical power transmission. Radio interference tests on a 800kV spherical corona screen(AC and DC Tests)-Test Report 0901-001[R]. Duisburg, Germany, 2009. [16] Faculty of engineering sicences electrical power transmission. Radio interference tests on a 800kV spherical corona screen with additional corona collars (AC and DC Tests)-Test Report 0907-020[R]. Duisburg, Germany, 2009. [18] 丛玉頔. 特高压直流套管的电场分布研究[D]. 济南: 山东大学, 2011: 8-49. [19] 王栋, 阮江军, 杜志叶, 等. ±500kV直流输电系统换流站阀厅内金具表面电场数值求解[J]. 高电压技术, 2011, 37(2): 404-410. [20] 王栋, 阮江军, 杜志叶, 等. ±660kV直流换流站阀厅内金具表面电场数值求解[J]. 高电压技术, 2011, 37(10): 2594-2600. [21] 阮江军, 詹婷, 杜志叶, 等. ±800kV特高压直流换流站阀厅金具表面电场计算[J]. 高电压技术, 2013, 39(12): 2916-2923. [21] GB/T 2314—2008, 电力金具通用技术条件[S]. 北京: 中国标准出版社, 2009. [22] GB/T 2317.2—2008, 电力金具试验方法 第2部分: 电晕和无线电干扰试验[S]. 北京: 中国标准出版社, 2009. [24] 刘小刚, 王茂忠, 种芝艺, 等. 宝鸡换流站阀厅电气连接及金具设计特点[J]. 电力建设, 2011, 32(9): 24-29. [25] 刘鹏, 彭宗仁, 党镇平, 等. 极性反转试验中,±800kV换流变压器套管尾部的电场分布研究[J]. 电瓷避雷器, 2009(3): 1-4, 8. [26] 王丽杰, 杨金根. 高岭背靠背换流站阀厅金具设计[J]. 电力建设, 2009, 30(9): 31-35. [27] 焦保利, 郑平, 杨迎建, 等. 1000kV特高压交流变电金具电晕特性及优化[J]. 高电压技术, 2009, 35(6): 1237-1242. [28] 丁永福, 王祖力, 张燕秉, 等. ±800kV特高压直流换流站阀厅金具的结构特点[J]. 高压电器, 2013, 49(9): 13-18. [28] 国家电网. ±1100千伏特高压直流输电工程设备研制技术规范-套管[S]. 北京: 国家电网公司, 2011. [30] 严璋, 朱德恒. 高压绝缘技术[M]. 北京: 中国电力出版社, 2007. [31] 国家电网公司. 锦屏-苏南±800千伏特高压直流输电工程同里换流站直流场及阀厅电力金具技术协议[M]. 北京: 国家电网公司, 2011. |
|
|
|