|
|
Research on Simulation of Short-term Power Load Forecasting based on Neural Network |
Chen Ya1, Li Ping2 |
1. School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021; 2. Ningxia Key Laboratory of Intelligent Sensing for Desert Information, Yinchuan 750021 |
|
|
Abstract Short-term load forecasting models based on BP neural network and Elman neural network are established in order to improve the accuracy of short-term power load forecasting.In order to improve the convergence rate, the BP neural network is optimized by the additional momentum method. For Elman neural network is easy to fall into the local extremum, so improve the incentive function and use the LM algorithm to optimize the learning algorithm.Matlab simulation results show that the improved Elman neural network model is better than the BP neural network model with high accuracy and fast convergence speed, which is more suitable for dynamic problems.
|
Published: 20 January 2017
|
|
|
|
Cite this article: |
Chen Ya,Li Ping. Research on Simulation of Short-term Power Load Forecasting based on Neural Network[J]. Electrical Engineering, 2017, 18(1): 26-29.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I1/26
|
[1] 王璨. 电力系统短期负荷预测[D]. 北京: 华北电力大学, 2012. [2] 杨甲沛. 基于自适应学习速率的改进型BP算法研究[D]. 天津: 天津大学, 2008. [3] 刘天舒. BP神经网络的改进研究及应用[D]. 哈尔滨: 东北农业大学, 2011. [4] 曲薇薇. 基于BP人工神经网络的电力负荷预测[D].大庆: 东北石油大学, 2011. [5] 钟诗胜, 丁刚, 付旭云. 过程神经元网络模型及其工程应用[M]. 北京: 国防工业出版, 2014. [6] 任丽娜. 基于Elman神经网络的中期电力负荷预测模型研究[D]. 兰州: 兰州理工大学, 2007. [7] 井望隆, 潘玉民. 基于Elman网络的电力负荷预测研究[J]. 电脑知识与技术, 2013(16): 3871-3874. [8] 隋惠惠. 基于BP神经网络的短期电力负荷预测的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
|
|
|