|
|
Real-time Conductor’s Temperature Calculation of High Voltage Cable and Prediction Probe of Ampacity |
Zhao Baishan, Wang Qingzhu |
School of Information Science and Engineering, Shenyang University of Tecnology, Shenyang 110870 |
|
|
Abstract The real-time temperature of cable conductor is the foundation to judge whether the cable reaches its ampacity. In order to calculate the temperature field of cables, related researchers have used the methods of numerical analysis, analytical calculation, testing and temperature-line monitoring, etc. In this paper, on the basis of constructing the cable dynamic thermal circuit model, combined with the laying environment conditions, used Matlab software to get the numerical solution of differential equation groups of dynamic thermal circuit, obtained real-time distribution conditions of the temperature field of cables, and predicted withstand ampacities of cables under different conditions. According to the method, the real-time distribution conditions of temperature field of cables can be obtained under the action of applying the step current, as well as the required time that the conductor reaches the specified temperature can be calculated. The analysis results show that the method in this paper can calculate the real-time temperature field and the withstand ampacities of cables, as well as the temperature rise time of conductor can also be reasonably estimated. For the relevant project practice, the method has important reference significance.
|
Published: 21 March 2017
|
|
|
|
Cite this article: |
Zhao Baishan,Wang Qingzhu. Real-time Conductor’s Temperature Calculation of High Voltage Cable and Prediction Probe of Ampacity[J]. Electrical Engineering, 2017, 18(3): 10-15.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I3/10
|
[1] 马国栋. 电线电缆载流量[M]. 北京: 中国电力出版社, 2003. [2] IEC 60287-1. Calculation of the Current Rating- Current Rating uations (100% Load Factor) and Calculation of Losses[S].2001 [3] IEC 60287-2. Calculation of the Current Rating- Thermal Resistance[S]. 2001. [4] IEC 60287-3. Calculation of the Current Rating- Sections on Operating Conditions[S]. 1999. [5] IEC 60853. Calculation of the Cyclic and Emergency Current Rating of Cables[S]. 1989. [6] JB/T 10181. 电缆载流量计算[S]. 2014. [7] 李志坚, 张东斐, 曹慧玲, 等. 地下埋设电缆温度场和载流量的数值计算[J]. 高电压技术, 2004, 30(增1): 27-28, 30. [8] Nahman J, Tanaskovic M. Determination of the current carrying capacity of cables using the finite element method[J]. Electric Power Systems Research, 2002, 61(2): 109-117. [9] 陈民铀, 张鹏, 彭卉. 应用无网格伽辽金法的电力电缆载流量计算[J]. 中国电机工程学报, 2010, 30(22): 85-91. [10] 郑良华, 于建立, 周晓虎, 等. 直埋电缆群载流量和稳态温度场计算新方法[J]. 高电压技术, 2010, 36(11): 2833-2837. [11] 杨泽亮, 候志云, 何杰. 封闭空间电缆群散热的数值模拟[J]. 华南理工大学学报: 自然科学版, 1998, 26(2): 59-65. [12] 赵健康, 姜芸, 杨黎明, 等. 中低压交联电缆密集敷设载流量试验研究[J]. 高电压技术, 2005, 31(10): 55-58. [13] 庄小亮, 余兆荣, 牛海清, 等. 日负荷系数与10kV XLPE电缆周期负荷载流量关系的试验研究[J]. 电力自动化设备, 2014, 34(4): 168-172. [14] Yilmaz G, Karlik S E. A distributed optical fiber sensor for temperature detection in power cables[J]. Sensors and Actuators A-Physical, 2006, 125(2): 148-155. [15] 张振鹏, 赵健康, 饶文彬, 等. 电缆分布式光纤测温系统测量结果符合性的比对试验[J]. 高电压技术, 2012, 38(6): 1362-1367. [16] 雷成华, 刘刚. 高压单芯电缆动态增容的理论分析与实验研究[D]. 广州: 华南理工大学, 2012: 24-29. [17] 刘刚, 周凡, 刘毅刚. 高压单芯电缆铝护套下热阻的动态特性与实验研究[J]. 高电压技术, 2013, 39(3): 712-718. [18] 雷成华, 刘刚, 阮班义, 等. 根据导体温升特性实现高压单芯电缆动态增容的实验研究[J]. 高电压技术, 2012, 38(6): 1397-1402. [19] 雷鸣, 刘刚, 赖育庭, 等. 采用Laplace方法的单芯电缆线芯温度动态计算[J]. 高电压技术, 2010, 36(5): 1150-1154. [20] 刘刚, 阮班义, 林杰, 等. 架空导线动态增容的热路法稳态模型[J]. 高电压技术, 2013, 39(5): 1107-1113. |
|
|
|