|
|
The Power System Subsynchronous Oscillations were Studies based on Eigenvalue Analysis |
Yu Yunxia, Li Juan |
School of Automation, Beijing Information Science and Technology University, Beijing 100192 |
|
|
Abstract This paper taked the benchmark model as the research object, and used eigenvalue analysis method to analyze the subsynchronous oscillation of power system deeply. The frequency and damping parameters of subsynchronous oscillation were calculated. Furthermore, the eigenvalue analysis method was used to calculate the change of the parameters of the system for the influence of subsynchronous oscillation damping. The correctness of the eigenvalue analysis algorithm was verified by simulation.
|
Published: 19 April 2017
|
|
|
|
Cite this article: |
Yu Yunxia,Li Juan. The Power System Subsynchronous Oscillations were Studies based on Eigenvalue Analysis[J]. Electrical Engineering, 2017, 18(4): 44-48.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I4/44
|
[1] 肖湘宁, 郭春林, 高本峰, 等. 电力系统次同步振荡及其抑制方法[M]. 北京: 机械工业出版社, 2014. [2] 孙丽平. 基于特征值分析法的具有固定串联补偿的电力系统次同步谐振分析[D]. 武汉: 武汉大学, 2003. [3] 肖湘宁, 杨琳, 张丹, 等. 基于特征值法的次同步阻尼守恒特性分析[J]. 电网技术, 2011, 35(11): 80-84. [4] 李道霖, 张双平. 基于特征值分析法的电力系统稳定性研究[J]. 沈阳工程学院学报(自然科学版), 2010, 6(4): 326-329. [5] 王均衡. 采用最小特征值灵敏度法改善静态电压稳定性[D]. 郑州: 郑州大学, 2014. [6] 栗然, 卢云, 刘会兰, 等. 双馈风电场经串补并网引起次同步振荡机理分析[J]. 电网技术, 2013, 37(11): 3073-3079. [7] 孔永乐. 大规模风电外送次同步振荡机理研究[D]. 北京: 华北电力大学:北京 华北电力大学, 2013. [8] Uchida N, Nagao T. A new eigen-analysis method of steady-state stability studies for large power systems:A matrix method[J]. IEEE Transactions on Power Systems, 1988, 3(2): 706-714. [9] IEEE Subsynchorous Resonance Woking Group. First benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems, 1977, PAS-96(5): 1565-1572. [10] 陈萌. 复杂电力系统次同步振荡问题特征值分析的建模与算法研究[D]. 武汉: 华中科技大学, 2013. |
|
|
|