|
|
Classification and Recognition of Power Quality Multi-disturbance based on EEMD-HHT |
Cao Lingzhi, Liu Junfei, Zheng Xiaowan |
Zhengzhou University of Light Industry, Zhengzhou 450002 |
|
|
Abstract For the reason that existing classification and recognition methods of power quality multi-disturbance have lower classification accuracy and recognition ability, the EEMD-HHT method is introduced to classifying the power quality multi-disturbance, which is based on the characteristics of power quality multi-disturbance. Firstly, the signal was decomposed into Intrinsic Mode Function (IMF) by the EEMD. Then the noise in the components is suppressed through thresholding and reconstructing each IMF with adaptive thresholds. Finally, the instantaneous attributes and start-stop time of the power quality multi-disturbance signals can be extracted with Hilbert transform. Simulation results in matlab show that the proposed method can effectively detect, locate and analyze power quality multi- disturbance.
|
Published: 19 April 2017
|
|
|
|
Cite this article: |
Cao Lingzhi,Liu Junfei,Zheng Xiaowan. Classification and Recognition of Power Quality Multi-disturbance based on EEMD-HHT[J]. Electrical Engineering, 2017, 18(4): 66-70.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I4/66
|
[1] 王林泓, 陈学昌. 基于双密度双树小波变换的电能质量扰动识别方法[J]. 电测与仪表, 2012, 49(8): 18-21, 26. [2] 关维国, 姚清志, 高阳, 等. 基于db4小波的配电网暂态电能质量扰动的检测与定位[J]. 电力系统保护与控制, 2015, 43(8): 102-106. [3] 党克, 张超. 基于小波分析的谐波电流检测[J]. 电气开关, 2015, 53(6): 39-41, 45. [4] 雷汝海, 郝震. 基于小波变换Mallat算法的电网谐波检测方法[J]. 工矿自动化, 2014, 40(12): 65-69. [5] 徐健, 张语勍, 李彦斌, 等. 短时傅里叶变换和S变换用于检测电压暂降的对比研究[J]. 电力系统保护与控制, 2014, 42(24): 44-48. [6] 徐永海, 赵燕. 基于短时傅里叶变换的电能质量扰动识别与采用奇异值分解的扰动时间定位[J]. 电网技术, 2011, 35(8): 174-180. [7] 徐方维, 杨洪耕, 叶茂清, 等. 基于改进S变换的电能质量扰动分类[J]. 中国电机工程学报, 2012, 32(4): 77-84. [8] 张志禹, 满蔚仕, 郗垒, 等. 快速S变换在电能质量分析中的应用[J]. 电网技术, 2013, 37(5): 1285-1290. [9] 尹柏强, 何怡刚, 朱彦卿. 一种广义S变换及模糊SOM网络的电能质量多扰动检测和识别方法[J]. 中国电机工程学报, 2015, 35(4): 866-872. [10] 李天云, 陈昌雷, 周博, 等. 奇异值分解和最小二乘支持向量机在电能质量扰动识别中的应用[J]. 中国电机工程学报, 2008, 28(34): 124-128. [11] 杨耿煌, 温渤婴. 基于量子行为粒子群优化-人工神经网络的电能质量扰动识别[J]. 中国电机工程学报, 2008, 28(10): 123-129. [12] 朱玲, 刘志刚, 胡巧琳, 等. 基于CWD谱峭度的暂态电能质量扰动识别[J]. 电力自动化设备, 2014, 34(2): 125-131. [13] 陈春玲, 许童羽, 郑伟, 等. 多类分类SVM在电能质量扰动识别中的应用[J]. 电力系统保护与控制, 2010, 38(13): 74-78. [14] 栾佳雨, 王海瑞, 毕贵红, 等. 非负矩阵分解方法识别电能质量扰动信号[J]. 计算机工程与应用, 2013, 49(4): 240-244, 253. [15] 刘志刚, 王英, 范福强. 基于内禀模态奇异值伪熵特征提取的电能质量扰动识别[J]. 电力科学与技术学报, 2013, 28(2): 3-9. [16] 沈跃, 张瀚文, 刘国海, 等. 基于判别字典学习的电能质量扰动识别方法[J]. 仪器仪表学报, 2015, 36(10): 2167-2173. [17] Wu Z, Huang N E. Ensemble empirical mode decomposition-anoise-assisted data analysis method[R]. Calverton, USA: Centerfor Ocean-Land-Atmosphere Studies, 2005. |
|
|
|