|
|
Correlation Analysis of Electricity Consumption Index and Load Forecasting Considering Adjustment of Industrial Structures |
Yang Fangyuan1, Shi Yuchao2, Hou Yucheng1 |
1. Technical and Economic Research Institute of Liaoning Electric Power Co., Ltd, Shenyang 110010; 2. Hangzhou Power Supply Company of State Grid Zhejiang Electric Power Company, Hangzhou 310009 |
|
|
Abstract In recent years, China's industrial structure upgrade is entering the new stage of three phase stack, which makes the power demand structure changes dramatically and frequently. In view of the common power load forecasting methods problems in the industrial structure adjustment period, this paper use vector error correction theory to analyze the relationship between total electricity consumption and the three industries, and the relationship between the electricity consumption index and gross industrial production, and a new method of power consumption prediction is proposed. Examples demonstrate the applicability and effectiveness of the proposed method.
|
Published: 23 May 2017
|
|
|
|
Cite this article: |
Yang Fangyuan,Shi Yuchao,Hou Yucheng. Correlation Analysis of Electricity Consumption Index and Load Forecasting Considering Adjustment of Industrial Structures[J]. Electrical Engineering, 2017, 18(5): 19-23.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I5/19
|
[1] 牛东晓, 曹树华, 赵磊, 等. 电力负荷预测技术及应用[M]. 北京: 中国电力出版社, 1998. [2] 毛李帆, 江岳春, 姚建刚, 等. 采用正交信号修正法与偏最小二乘回归的中长期负荷预测[J]. 中国电机工程学报, 2009, 29(16): 82-88. [3] Higgins M L, Brea A K. A class of nonlinear ARCH models[J]. International Economic Review, 1992, 33(1): 137-158. [4] Engle R E, Lilin D, Robins R P. Estimating time varying risk premia in the term structure: the ARCH model, Econometrica, 1987, 55(2): 391-407. [5] Barakat E H, Eissa M M. Forecasting monthly peak demand in fast growing electric utility using a composite multiregression-decomposition model[J]. IEEE proceeding , 1989, 136(1): 35-41. [6] Jia Zhengyuan. Electricity consumption forecasting in peak load month based on variable weight combination forecasting model[C]//International Conference on Automation and Logistics, 2008: 1265-1269. [7] 刘建平, 王旭斌, 吴岩, 等. 含风电和储能的电力系统安全约束机组组合问题研究[J]. 现代电力, 2015, 32(5): 48-55. [8] 杨再鹤, 向铁元, 郑丹. 基于小波变换和SVM算法的微电网短期负荷预测研究[J]. 现代电力, 2014, 31(3): 74-79. [9] 盛四清, 李亮亮, 刘梦. 考虑多重不确定因素的含风电场低碳经济调度[J]. 现代电力, 2016, 33(2): 77-83. [10] 刘梦轩, 孙国强. 实时电价条件下的短期负荷预测[J]. 现代电力, 2013, 30(5): 78-82. [11] 王有春, 文闪闪, 秦跃进, 等. 微电网规划关键问题与运行仿真[J]. 现代电力, 2015, 32(1): 8-12. [12] Bunnoon P, Chalermyyanont K, Limsakul C. Midterm load forecasting of the country using statistical methodology: case study in Thailand[C]//International Conference on Signal Processing Systems. Singapore: IEEE Computer Society, 2009: 924-928. [13] 谢开贵, 李春燕, 周家启. 基于神经网络的负荷组合预测模型研究[J]. 中国电机工程学报, 2005, 25(13): 155-159. [14] 王鹏, 陈启鑫, 夏清, 等. 应用向量误差修正模型的行业电力需求关联分析与负荷预测方法[J]. 中国电机工程学报, 2012, 32(4): 100-107. [15] 毛雪雁, 孙黎滢, 葛菊女, 等. 基于协整理论的民营经济电力需求预测研究[J]. 华东电力, 2013, 41(1): 28-32. [16] 李翔, 高山, 陈昊. 基于变结构协整理论的中长期电力负荷预测模型[J]. 电网技术, 2007, 31(9): 48-52. [17] 程浩忠, 陈章潮. 城市电网规划与改造[M]. 北京: 中国电力出版社, 2015. [18] DavidFreedman, 魏宗舒, 施锡銓, 等. 统计学[M]. 北京: 中国统计出版社, 1997. [19] 马瑞, 彭舟, 蒋诗谣, 等. 季节划分下产业用电量关联分析及预测[J]. 中国电力, 2015, 48(7): 82-88. |
|
|
|