|
|
The Method of Fault Traveling Wave Feature Recognition based on Time-Domain Characteristics and Wavelet Analysis |
Li Wenguo, Ma Bingyu |
Xianheng International (Hangzhou) Electric Infrastructure Co., Ltd, Hangzhou 310022 |
|
|
Abstract With the application of power cable becoming more and more widespread, the power sector is increasing the demands for accuracy and timeliness of cable fault location. Feature recognition of fault traveling wave is the key to fault location. This paper presents a feature extraction method of fault traveling wave based on combination of time-domain characteristics and wavelet analysis, which firstly filters noise of the original signal using adaptive threshold method, then applies differential and wavelet analysis algorithms to extracting the characteristics of starting point of two adjacent reflection waves, finally calculates the fault distance. Experimental results show that this method improves the accuracy of cable fault location, which has a certain practical application value.
|
Published: 23 May 2017
|
|
|
|
Cite this article: |
Li Wenguo,Ma Bingyu. The Method of Fault Traveling Wave Feature Recognition based on Time-Domain Characteristics and Wavelet Analysis[J]. Electrical Engineering, 2017, 18(5): 30-33.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I5/30
|
[1] 王建立, 张志利. 小波变换和自相关分析法在电力电缆故障测距中的应用[J]. 电气技术, 2009(2): 46-49, 53. [2] 姚建红, 林娜. 王天明, 等. 基于小波变换的电缆故障测距研究[J]. 化工自动化及仪表, 2014, 41(1): 45-49. [3] 季忠, 刘旭. 基于波形特征和小波的脉搏波特征点识别研究[J]. 仪器仪表学报, 2016, 37(2): 379-386. [4] 赵军玉, 杨淑英, 陆海东, 等. 不受电缆波速度影响的混合线路故障定位研究[J]. 电测与仪表, 2013, 50(7): 11-15, 20. [5] 苏燕民. 基于低压脉冲法和脉冲电流法的电缆故障测距分析[J]. 广东科技, 2010, 19(18): 80-83, 99. [6] Donoho DL. DE-NOISING BY SOFT-THRESHOLDING[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627. [7] 钱苏敏, 张琳絮, 张云, 等. 基于小波阈值改进的去噪算法研究[J]. 国外电子测量技术, 2012, 31(5): 49-51. [8] 李永军, 马立元, 段永刚. 一种改进的小波阈值去噪算法及其仿真分析[J]. 自动化仪表, 2011, 32(7): 21-24. |
|
|
|