|
|
The New Method of GIS Partial Discharge Pattern Recognition and Application |
Qiu Pengfeng1, Zheng Lianqing1,2, Wei Chengwei2 |
1. College of Electrical Engineering, Chongqing University, Chongqing 400044; 2. Xinjiang Institute of Engineering, Urumqi 830091 |
|
|
Abstract In this paper, the PD signal obtained by UHF detection method is used as the characteristic quantity of PD defect types, through the four kinds of defect types arranged by the GIS experiment platform, 17 groups of feature quantities are selected by time domain and frequency domain, etc. Then, useingLocally linear embedding (LLE) method to reduce the dimensionality of 17 sets of feature groups, and nine effective characteristic parameters are obtained. (M-RVM) was used as the recognition method. The experimental data obtained at 110kV voltage were used as training and prediction samples, The results show that above 86% recognition rate is achieved, the validity of the identification system combined with LLE and M-RVM was verified.
|
Published: 18 August 2017
|
|
|
|
Cite this article: |
Qiu Pengfeng,Zheng Lianqing,Wei Chengwei. The New Method of GIS Partial Discharge Pattern Recognition and Application[J]. Electrical Engineering, 2017, 18(8): 12-16.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I8/12
|
[1] 郑闻文, 李功新, 舒胜文. GIS局部放电UHF检测系统性能检验方法研究进展[J]. 电气技术, 2016, 17(10): 1-7. [2] 唐炬, 董玉林, 樊雷, 等. 基于Hankel矩阵的复小 波-奇异值分解法提取局部放电特征信息[J]. 中国电机工程学报, 2015, 35(7): 1808-1817. [3] 钱勇, 黄成军, 江秀臣, 等. 基于超高频法的GIS局部放电在线监测研究现状及展望[J]. 电网技术, 2005, 29(1): 40-43, 55. [4] 李信, 李成榕, 丁立健, 等. 基于特高频信号检测GIS局放模式识别[J]. 高电压技术, 2003, 14(3): 16-20. [5] 张凯, 孙亚明, 胡春江, 等. GIS设备局部放电检测技术研究[J]. 电气技术, 2014, 15(9): 66-69. [6] 唐炬, 樊雷, 张晓星, 等. 用谐波小波包变换法提取GIS局部放电信号多尺度特征参数[J]. 电工技术学报, 2015, 30(3): 250-257. [7] 王彩雄. 基于特高频法的GIS局部放电故障诊断研究[D]. 华北电力大学, 2013. [8] 李化, 程昌奎, 陈娇, 等. 基于EMD的GIS典型局部放电超高频信号的分形特征提取方法[J]. 高压电器, 2014(6): 104-110. [9] 律方成, 金虎, 王子建, 等. 主分量稀疏化在GIS局部放电特征提取中的应用[J]. 电工技术学报, 2015, 30(8): 282-288. [10] 鲍永胜, 郝峰杰, 徐建忠, 等. GIS局部放电脉冲分类特征提取算法[J]. 电工技术学报, 2016(9): 181-188. [11] 律方成, 张波. 基于S_Kohonen网络的GIS局部放电类型识别[J]. 电测与仪表, 2014, 51(20): 21-24. [12] 黄亮, 唐炬, 凌超, 等. 基于多特征信息融合技术的局部放电模式识别研究[J]. 高电压技术, 2015(3): 947-955. [13] 律方成, 金虎, 王子建. 等. 基于主成分分析和多分类相关向量机的GIS局部放电模式识别[J]. 电工技术学报, 2015(6): 225-231. [14] 律方成, 张波. 基于LLE降维和BP_Adaboost分类器的GIS局部放电模式识别[J]. 电测与仪表, 2014(15): 37-41. [15] 杨志超, 范立新, 杨成顺, 等. 基于GK模糊聚类和LS-SVC的GIS局部放电类型识别[J]. 电力系统保护与控制, 2014(20): 38-45. [16] 阎少宏, 彭亚绵, 杨爱民, 等. LLE算法及其在手写文字识别中应用[J]. 河北联合大学学报: 自然科学版, 2012, 34(2): 52-55. [17] Tipping M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244. |
|
|
|