|
|
Short-term Energy-saving Generation Optimization Scheduling of Hydro-thermal Power System |
Zhou Yihuan1, Liu Zheng2, Wu Zihao1 |
1. State Grid Shaanxi Electric Power Research Institute, Xi'an 710048; 2. State Grid Shaanxi Electric Power Corporation, Xi'an 710048 |
|
|
Abstract This article aiming at improving the economy of hydrothermal combined power system operation and environmental benefits,we can solve the problems from the two aspects of reducing the use of fossil fuels and the cost of coal-fired generating units. We can convert the optimal scheduling of short-term study of water and thermal into a sequence of four optimization sub-problems: maximal cascaded energy output, the minimum of hydroelectric water consumption,the minimum of thermal power pollutant discharge and the minimum of thermal power cost. The optimization scheduling model can not only determine the optimal output of thermal power and the best water storage strategy of hydropower, but also describe the complementary roles of hydropower and thermal power,fully embodies the concept of energy conservation and efficiency.In the view of the shortcoming that particle swarm optimization (PSO) algorithm is easy to fall into local optimum, worst particle and adaptive inertia weight are is introduced in the standard particle swarm optimization algorithm,avoiding the premature convergence and falling into local optimum. For the multi-objective optimization problem which each target are different dimension and weight coefficient is hard to reasonably determine, desirability function and Euclidean distance function are used to the normalize processing, and the improved particle swarm optimization algorithm is adopted to optimize target after processing.The examples simulation verify the correctness of the model and the effectiveness of the algorithm in this article.
|
Published: 20 September 2017
|
|
|
|
Cite this article: |
Zhou Yihuan,Liu Zheng,Wu Zihao. Short-term Energy-saving Generation Optimization Scheduling of Hydro-thermal Power System[J]. Electrical Engineering, 2017, 18(9): 66-71.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I9/66
|
[1] Bisanovic S, Hajro M, Dlakic M. Hydrothermal self-scheduling problem in a day-ahead electricity market[J]. Electric Power Systems Research, 2008, 78(9): 1579-1596. [2] 邵宝珠, 王优胤, 宋丹. 电力期货在水火电资源优化配置中的应用[J]. 电网技术, 2010, 34(11): 170-175. [3] 吴宏宇, 管晓宏, 翟桥柱, 等. 水火电联合短期调度的混合整数规划方法[J]. 中国电机工程学报, 2009, 29(28): 82-88. [4] Yu B H, Yuan X H, Wang J W. Short-term hydro- thermal scheduling using particle swarm optimization method[J]. Energy Conversion and Management, 2007, 48(7): 1902-1908. [5] 陈建建, 赵彩虹, 高星辰, 等. 配电网中分布式电源的优化配置研究[J]. 电气技术, 2016, 17(5): 36-40, 44. [6] 韩冬. 水火电短期优化调度模型和算法的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. [7] 赵彪, 孙智华, 宗薇薇. 含风/火/水发电的电力系统中长期优化调度[J]. 电气技术, 2016, 17(9): 34-38. [8] 艾琳, 华栋. 基于模糊优化和内点法的水火电系统短期经济调度[J]. 电力自动化设备, 2008, 28(8): 46-50. [9] 张晓花, 朱昌平, 陈星莺, 等. 计及节能减排的梯级水火电优化调度研究[J]. 华东电力, 2012(7): 1104- 1107. [10] 卢有麟, 周建中, 王永强, 等. 水火电力系统多目标环境经济调度模型及其求解算法研究[J]. 电力系统保护与控制, 2011, 39(23): 93-100. [11] 覃晖, 周建中. 基于多目标文化差分进化算法的水火电力系统优化调度[J]. 电力系统保护与控制, 2011, 39(22): 90-97. [12] 陈道君, 龚庆武, 张茂林, 等. 考虑能源环境效益的含风电场多目标优化调度[J]. 中国电机工程学报, 2011, 31(13): 10-17. [13] 周德建, 杨莉, 郭义明, 等. 基于免疫算法的水火电联合调度研究[J]. 电力系统保护与控制, 2012(22): 32-37. [14] 胡国强. 梯级水电站优化调度模型与算法研究[D]. 北京: 华北电力大学, 2007. [15] 吴杰康, 唐力. 含不确定性负荷的水火电力系统随机优化调度[J]. 中国电机工程学报, 2012, 32(28): 36-43. |
|
|
|