|
|
Research Progress of Typhoon Damage Mechanism of Distribution Line |
Jiang Sijie1, 2, Yi Tao2, Zhang Konglin3, Jiang Xiubo1 |
1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108; 2. Electric Power Reserch Institute of Fujian Electric Power Co., Ltd, Fuzhou 350007; 3. Fujian Electric Power Co., Ltd, Maintenance Branch, Fuzhou 350011 |
|
|
Abstract In order to deal with the serious problems of the typhoon attack on the distribution lines, it is very important to study the mechanism of typhoon damage in distribution lines.This paper first introduces the characteristics of typhoon disaster and the main form of disaster. And then summarizes the current situation and achievements of distribution line load from the two categories of transmission tower and concrete pole. Then, it points out the problems and shortcomings in the study of typhoon disaster mechanism of distribution line. At present, the urgent need to study the current situation of typhoon disaster distribution factor identification is pointed out. Finally, the future direction of further research is expected.
|
Published: 06 December 2017
|
|
|
|
Cite this article: |
Jiang Sijie,Yi Tao,Zhang Konglin等. Research Progress of Typhoon Damage Mechanism of Distribution Line[J]. Electrical Engineering, 2017, 18(11): 6-11.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I11/6
|
[1] 郇嘉嘉, 曾海涛, 黄少先. 应用线路避雷器提高10kV配电线路防雷性能的研究[J]. 电力系统保护与控制, 2009, 37(9): 109-112, 115. [2] 王昊昊, 罗建裕, 徐泰山, 等. 中国电网自然灾害防御技术现状调查与分析[J]. 电力系统自动化, 2010, 34(23): 5-10, 118. [3] 厉天威, 江巳彦, 赵建华, 等. 南方电网沿海地区输电线路风灾事故分析[J]. 高压电器, 2016(6): 23-28. [4] 林建勤. 建立科学高效的电网防台风暴雨应急机制[J]. 供用电, 2007, 24(4): 9-11, 14. [5] 陈鹏云, 张露, 王成智, 等. 台风对我国电网损毁性影响评估技术研究[C]//国家综合防灾减灾与可持续发展论坛论文集, 北京, 2010. [6] 吴勇军, 薛禹胜, 谢云云, 等. 台风及暴雨对电网故障率的时空影响[J]. 电力系统自动化, 2016, 40(2): 20-29, 83. [7] 熊铁华, 梁枢果, 邹良浩. 考虑断线时输电铁塔的失效模式及其极限荷载[J]. 土木工程学报, 2009(11): 86-90. [8] 白海峰. 输电塔线体系环境荷载致振响应研究[D]. 大连: 大连理工大学, 2007. [9] 刘锡良, 周颖. 风荷载的几种模拟方法[J]. 工业建筑, 2005, 35(5): 81-84. [10] Irvine HM. The linear theory of free vibrations of a suspended cable[J]. Proceedings of the Royal Society a, 1974, 341(1626): 299-315. [11] Ozono S, Maeda J. In-plane dynamic interaction between a Tower and conductors at lower frequencies[J]. Engineering Structures, 1992, 14(4): 210-216. [12] Yasui H, Marukawa H, Momomura Y, et al. Analytical study on wind-induced vibration of power transmission towers[J]. Journal of Wind Engineering&Industrial Aerodynamics, 1999, 83(1/3): 431-441. [13] Albermani F, Kitipornchai S, Chan R W K. Failure analysis of transmission towers[J]. Engineering Failure Analysis, 2009, 16 (6): 1922-1928. [14] Shehata A Y. El Damatty A A, Savory E. Finite element modeling of transmission line under downburst wind loading[J]. Finite Elements in Analysis & Design, 2005, 42(1): 71-89. [15] 梁波, 徐建良. 架空输电铁塔动力风响应的数值模拟[J]. 同济大学学报(自然科学版), 2002, 30(5): 583-587. [16] 马星. 输电塔线耦合体系风振响应研究[C]//第十届全国结构风工程学术会议论文集, 桂林, 2001. [17] 吕志政, 欧阳可庆, 王肇民. 拉绳塔的非线性分析[J]. 同济大学学报, 1983(1): 15-30, 122. [18] 贺博, 修娅萍, 赵恒, 等. 强台风下高压输电线路塔—线耦联体系的力学行为仿真分析二: 动力响应分析[J]. 高压电器, 2016(4): 42-47. [19] 张宏杰, 杨靖波, 杨风利, 等. 台风风场参数对输电杆塔力学特性的影响[J]. 中国电力, 2016, 48(2): 41-47. [20] Momomura Y, Marukawa H, Okamura T, et al. Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area[J]. Journal of Wind Engineering&Industrial Aerody- namics, 1997, 72(1): 241-252. [21] Okamura T, Ohkuma T, Hongo E, et al. Wind response analysis of a transmission Tower in a mountainous area[J]. Journal of Wind Engineering&Industrial Aerodynamics, 2003, 91(1): 53-63. [22] 何敏娟, 杨必峰. 江阴500kV拉线式输电塔脉动实测[J]. 结构工程师, 2003(4): 74-79. [23] Loredo-Souza A M. Davenport A G. A novel approach for wind tunnel modelling of transmission lines[J]. Journal of Wind Engineering&Industrial Aerody- namics, 2001, 89(11): 1017-1029. [24] 楼文娟, 孙炳楠, 叶尹. 高耸塔架横风向动力风效应[J]. 土木工程学报, 1999, 32(6): 67-71. [25] 程志军, 付国宏, 楼文娟, 等. 高耸格构式塔架风荷载试验研究[J]. 实验力学, 2000, 15(1): 51-55. [26] 韩银全, 梁枢果, 邹良浩, 等. 输电塔线体系完全气弹模型设计[C]//第十三届全国结构风工程学术会议论文集, 大连, 2007. [27] 邹良浩, 梁枢果, 邹垚, 等. 格构式塔架风载体型系数的风洞试验研究[J]. 特种结构, 2008, 25(5): 41-43, 68. [28] 张庆华, 顾明, 黄鹏. 典型输电塔塔头风力特性试验研究[J]. 振动工程学报, 2008, 21(5): 452-457. [29] 邓洪洲, 张建明, 帅群, 等. 输电钢管塔体型系数风洞试验研究[J]. 电网技术, 2010(9): 190-194. [30] 王璋奇, 陈海波, 周邢银. 垭口型微地形对输电线路风载荷影响的分析[J]. 华北电力大学学报, 2008, 35(4): 23-26. [31] 高雁, 杨靖波. 微地形区域输电线路杆塔电线风荷载计算方法[J]. 电网技术, 2012, 36(8): 111-115. [32] 赵渊, 魏亚楠, 范飞, 等. 计及微振磨损与风雨荷载的输电线可靠性建模[J]. 电力系统保护与控制, 2015(2): 19-25. [33] Kikuchi N, Matsuzaki Y, et a1. Aerodynamic drag of new-design electric power wire in a heavyrainfall and wind[J]. Wind Eog. Ind. Aerodyn. 2003. 91: 41-51. [34] Eguchi Y, Kikuchi N, Kawabata K, et al. Drag reduction mechanism and aerodynamiccharacteristics of a newly developed overhead electric wire[Z]. 2002: 304. [35] 李宏男, 任月明, 白海峰. 输电塔体系风雨激励的动力分析模型[J]. 中国电机工程学报, 2007, 27(30): 43-48. [36] 任月明. 风雨激励下输电塔线体系的动力响应分析[D]. 大连: 大连理工大学, 2007. [37] 杨清, 魏亚楠, 赵渊, 等. 强风雨荷载冲击下的输电线路可靠性建模方法[J]. 电力自动化设备, 2015, 35(2): 133-137. [38] Fu Xing, Li Hongnan. 良态风及台风不同风谱对结构风雨振反应对比分析[J]. Journal of Vibration and Shock, 2015, 34(11): 7-10. [39] 吴海彬, 赵志向, 廖福旺, 等. 电杆仿风载荷弯矩自动加载系统的研究[J]. 中国工程机械学报, 2015, 13(1): 63-68. [40] 凌四海. 10kV架空电力线路的可靠性计算[J]. 电力建设, 2001, 22(3): 19-20. [41] 罗俊平. 浅谈配网防风加强措施[J]. 南方电网技术, 2013, 7(3): 63-66. [42] 钟晖, 金伟君, 龚坚刚. 沿海易受台风袭击地区架空配电线路防台措施[C]//全国电力系统配电技术协作网第二届年会论文集, 福州, 2009. [43] 彭向阳, 黄志伟, 戴志伟. 配电线路台风受损原因及风灾防御措施分析[J]. 南方电网技术, 2010, 4(1): 99-102. [44] 刘权辉. 浅谈配电线路台风受损原因以及台风防御措施[J]. 中国科技纵横, 2015(6): 134-134, 138. [45] 高海翔, 陈颖, 黄少伟, 等. 配电网韧性及其相关研究进展[J]. 电力系统自动化, 2015(23): 1-8. |
|
|
|