|
|
The Application of Soft Measurement Technology of Thermal Parameter to Energy Saving in Thermal Power Plant |
He Jun |
Xingyi Guizhou Electric Power Development Co., Ltd, Xingyi, Guizhou 562400 |
|
|
Abstract The thermal parameter soft measurement technology in energy saving of thermal power plant has been studied. Two indexes which content on the economic performance of the unit are modeled as oxygen content and the carbon content of fly ash. The soft measurement and actual values of the two models are verified. At the same time, the mean square error coefficient is used as the measurement index. The results of the two models are 0.043 and 0.039 respectively.
|
Published: 06 December 2017
|
|
|
|
Cite this article: |
He Jun. The Application of Soft Measurement Technology of Thermal Parameter to Energy Saving in Thermal Power Plant[J]. Electrical Engineering, 2017, 18(11): 114-116.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2017/V18/I11/114
|
[1] 阎威武, 朱宏栋, 邵惠鹤. 基于最小二乘支持向量机的软测量建模[J]. 系统仿真学报, 2003, 15(10): 1494-1496. [2] 周昊, 朱洪波, 曾庭华, 等. 基于人工神经网络的大型电厂锅炉飞灰含碳量建模[J]. 中国电机工程学报, 2002, 22(6): 96-100. [3] 王剑东, 王东风, 韩璞. 软测量技术及其在电厂热工过程中的应用[J]. 电站系统工程, 2002, 18(5): 49-51. [4] 乔弘. 火电厂热工参数软测量关键技术和方法研究[D]. 北京: 华北电力大学, 2009. [5] 刘福国, 郝卫东, 韩小岗, 等. 基于烟气成分分析的电站锅炉入炉煤质监测模型[J]. 燃烧科学与技术, 2002, 8(5): 441-445. [6] 方湘涛, 叶念渝. 基于BP神经网络的电厂锅炉飞灰含碳量预测[J]. 华中科技大学学报(自然科学版), 2003, 31(12): 75-77. [7] 刘长良, 孙晓娇, 刘站营. 支持向量机在锅炉飞灰含碳量软测量中的应用[J]. 电力科学与工程, 2010, 26(1): 39-43, 59. [8] 付旭, 丁建设, 潘军民, 等. 基于模型预测控制的火电厂主蒸汽温度优化[J]. 电气技术, 2014, 15(1): 126-127. [9] 郭建仙, 杨帆. ECMS系统在百万机组的应用分析[J]. 电气技术, 2015, 16(9): 78-82. |
|
|
|