|
|
Short-term load forecasting based on improved particle swarm neural network |
Jiang Yunteng1, Li Ping2 |
1. School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021 2. Ningxia Key Laboratory of Intelligent Sensing for Desert Information, Yinchuan 750021 |
|
|
Abstract In the development of the power system, the power load plays a very important role, so the accuracy of power load forecasting is particularly important.In order to improve the accuracy of short-term load forecasting, an improved particle swarm-BP neural network hybrid optimization algorithm is proposed. The particle swarm optimization algorithm with adaptive inertia weight improves the convergence speed and convergence accuracy of PSO. In the process of optimizing the neural network, the initial weights and threshold parameters of the BP neural network are improved, and the IPSO-BP algorithm model is established to forecast the short-term power load. The simulation results how that the convergence speed and prediction accuracy of the model are superior to the traditional particle swarm-BP neural network model based on historical load data from one places. The model improves the shortcomings of particle swarm optimization and neural network, and improves the generalization ability of BP neural network. The model improves the short-term load forecasting accuracy, and the average relative error is about 1%, which can be used for short-term load forecasting of power system.
|
Received: 04 August 2017
Published: 07 February 2018
|
|
|
|
Cite this article: |
Jiang Yunteng,Li Ping. Short-term load forecasting based on improved particle swarm neural network[J]. Electrical Engineering, 2018, 19(2): 87-91.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2018/V19/I2/87
|
[1] Feng Sha, Feng Zhu, Shun Nan Guo, et al. Based on the EMD and PSO-BP neural network of short-term load forecasting[J]. Advanced Materials Research, 2013, 614-615: 1872-1875. [2] 代鑫波, 崔勇, 周德祥, 等. 基于主成分与粒子群算法的LS-SVM短期负荷预测[J]. 电测与仪表, 2012, 49(6): 5-9. [3] Lu Kuan, Sun Wenxue, Ma Changhui, et al. Load forecast method of electric vehicle charging station using SVR based on GA-PSO[J]. IOP Conference Series: Earth and Environmental Science, 2017, 69(1): 012196. [4] Wang Xiping, Wang Yaqi, Mussetta Marco. A hybrid model of EMD and PSO-SVR for short-term load forecasting in residential quarters[J]. Mathematical Problems in Engineering, 2016(5): 1-10. [5] 刘轲. 电力系统短期负荷预测的研究[D]. 兰州理工大学, 2016. [6] 全红梅. 基于粒子群优化BP神经网络的长春东卉供热区域热力负荷预测研究[D]. 长春: 吉林大学, 2016. [7] 陈帅, 王勇, 吕丰, 等. 基于粒子群BP神经网络的短期电力负荷预测[J]. 上海电力学院学报, 2014, 30(2): 131-135. [8] 吴凯, 周西峰, 郭前岗. 基于粒子群神经网络的负荷预测方法研究[J]. 电测与仪表, 2013(3): 29-32. [9] 熊伟. 基于粒子群模糊径向基网络的电力系统短期负荷预测[D]. 长沙: 长沙理工大学, 2009. [10] 金敏, 鲁华祥. 一种遗传算法与粒子群优化的多子群分层混合算法[J]. 控制理论与应用, 2013, 30(10): 1231-1238. [11] 黄太安, 生佳根, 徐红洋, 等. 一种改进的简化粒子群算法[J]. 计算机仿真, 2013, 30(2): 327-330, 335. [12] 师彪, 李郁侠, 于新花, 等. 改进粒子群-BP神经网络模型的短期电力负荷预测[J]. 计算机应用, 2009, 29(4): 1036-1039. [13] 隋惠惠. 基于BP神经网络的短期电力负荷预测的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [14] 黄欣, 赵锦成, 解璞. 基于BP神经网络的电站负荷预测仿真研究[J]. 国外电子测量技术, 2012(11): 41-43. [15] 赵娟娟. 基于BP神经网络的电力系统短期负荷预测[D]. 哈尔滨: 哈尔滨理工大学, 2013. [16] 张少平, 徐晓钟, 代军委. 基于自适应变异粒子群算法和BP神经网络的短期燃气负荷预测[J]. 计算机应用, 2016, 36(S1): 103-105, 153. |
|
|
|