|
|
The temperature analysis and experiment of the new-type energy-saving copper-clad aluminum busbar |
Chen Biao1, Luo Donghao2, Wang Sixiang3, Lian Guangkun1, Hao Wei1 |
1. Institute of Electrical Engineering of the Chinese Academy of Sciences, Beijing 100190; 2. Guangdong Rizhao Electrical Co., Ltd, Guangzhou 516000; 3. Shanghai Electric Windpower Equipment Co., Ltd, Shanghai 200241; |
|
|
Abstract The Copper-Clad Aluminum Pipe Busbar (CCAPB) composed of copper pipe and aluminum pipe is a new type energy-saving busbar. The inside aluminum pipe of CCAPB is covered with the layer of copper pipe. Copper pipe and aluminum pipe are mechanical contact, and each of them shares the whole current. Meanwhile, the inner aluminum pipe has an additional mechanical support function. According to the calculation formula of skin depth, the skin depth of copper is larger than that of aluminum, and the skin effect of copper is stronger at the same time. The structure of copper-clad aluminum increases the effective section area of conductor and reduces the conductor's impedance. So the conductor loss can be decreased and electric energy will be saved. Based on theoretical analysis and experiment, the temperature rise and distributionof CCAPB has carried on and the calculation results are in conformity with the test data. By comparing the test results of CCAPBandconventional solid copper bar,the excellent effect of energy and material saving of CCAPB has been shown at the end of this paper.
|
Received: 29 August 2017
Published: 19 March 2018
|
|
|
|
Cite this article: |
Chen Biao,Luo Donghao,Wang Sixiang等. The temperature analysis and experiment of the new-type energy-saving copper-clad aluminum busbar[J]. Electrical Engineering, 2018, 19(3): 85-89.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2018/V19/I3/85
|
[1] 王伟, 河东欣, 易登辉, 等. 工频电压下电缆本体的空间电荷测试[J]. 电工技术学报, 2016, 31(7): 152-158. [2] 曹丽鹏, 李志刚, 王国玲, 等. 配电网可靠性的云综合评判法[J]. 电工技术学报, 2015, 30(S1): 418-421. [3] 马丽叶, 贾彬, 卢志刚, 等. 基于静态安全性和实时供电能力的输电网安全等级研究[J]. 电工技术学报, 2014, 29(6): 229-237. [4] 庾莉萍. 我国铜消费需求及资源供给状况[J]. 有色金属加工, 2007, 36(4): 1-3, 54. [5] 黄崇祺. 论中国电缆工业的“以铝节铜”[J]. 资源再生, 2007, 6(11): 55-57. [6] 黄吉祥. 铜铝复合母线的应用技术探讨[C]//2012中国: 国际建筑电气节能技术论坛论文集, 杭州, 2012: 49-52. [7] 颜伟, 文旭, 余娟, 等. 智能电网环境下电力市场面临的机遇与挑战[J]. 电力系统保护与控制, 2010, 38(24): 224-230. [8] 杨武. 铝合金电缆在大型光伏电站的应用[J]. 电气技术, 2014, 15(2): 93-96. [9] 唐大保. 铜铝复合母线排在低压成套开关设备中的研究与应用[J]. 机床电器, 2012, 39(2): 50-52. [10] 张建宇, 姚金金, 曾祥勇, 等. 铜包铝复合材料研究进展[J]. 中国有色金属学报, 2014, 24(5): 1275-1284. [11] 王伟, 孙辉, 李富平, 等. 电缆本体中空间电荷的测量与特性[J]. 电工技术学报, 2015, 30(1): 255-260. [12] 张延宇, 曾鹏, 臧传治. 智能电网环境下家庭能源管理系统研究综述[J]. 电力系统保护与控制, 2014, 42(18): 144-154. [13] 王惠兵, 吕秀云. 浅谈铜包铝电缆的特点及应用前景[J]. 智能建筑与城市信息, 2013, 202(9): 97-100. [14] 王学平, 蔡西川, 何大海. 铜包铝母线的性能研究及制备技术分析[J]. 电线电缆, 2014(4): 13-16. [15] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006. [16] 吴励坚. 大电流母线的理论基础与设计[M]. 北京:水利电力出版社, 1985. [17] 鄢来君, 张颖. 大电流封闭母线温升计算[J]. 高电压技术, 2008, 34(1): 201-203. [18] 王劲松, 赵丽娟. 强迫风冷封闭母线温升规律的研究[J]. 水力发电, 2006, 32(12): 51-52, 102. [19] 罗涛, 陈民铀, 曾灿. 电力电缆安全监测中温度场和电场数值关系分析[J]. 电力系统保护与控制, 2010, 38(5): 20-24. |
|
|
|