|
|
The multimachine power system stabilizer parameters optimal design based on SMAFA optimization algorithm |
Zhan Renjun |
Fujian Shuikou Power Generation Group Co., Ltd, Fuzhou 350000 |
|
|
Abstract The performance of traditional power system stabilizer is greatly influenced by its own parameters. In order to maximize the performance of the power system stability, the current research mainly uses optimization algorithms for the tuning of PSS parameters. As an emerging swarm intelligence optimization algorithm, adaptive firefly algorithm (AFA) is very suitable for power system op-timization problems because of its good global search capability. In view of its problems of poor local search ability and easily oscillating at extreme point, combining the adaptive firefly algorithm with the simplex method, this paper proposes a new SMAFA method to improve the PSS optimization performance. Through the mathematics test and PSS interference and adaptive simulations, the proposed method is proved to have good global search ability and local search ability, and it can be better to improve the robustness of the power system.
|
Received: 23 May 2018
Published: 18 December 2018
|
|
|
|
Cite this article: |
Zhan Renjun. The multimachine power system stabilizer parameters optimal design based on SMAFA optimization algorithm[J]. Electrical Engineering, 2018, 19(12): 11-17.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2018/V19/I12/11
|
[1] 金涛,刘对. 基于广义形态滤波与改进矩阵束的电力系统低频振荡模态辨识[J]. 电工技术学报,2017,32(6): 3-13. [2] 陈剑,周宇植. 基于PMU的分布式次同步振荡在线辨识方法[J]. 电气技术,2017,18(10): 92-95. [3] 张俊峰,李鹏,郭琦. PSS2A模型的负阻尼案例分析及检测方法[J]. 电力系统自动化,2014,38(2): 127-130. [4] 赵晓伟,谢欢,吕思昕,等. 电力系统稳定器PSS4B的参数整定及现场试验[J]. 电网技术,2016,40(2): 508-513. [5] 陈刚,程林,张放,等. WPSS输入反馈时延的自适应分段补偿设计[J]. 电力系统自动化,2013,37(14): 25-31. [6] 边晓燕,施磊,宗秀红,等. 多运行方式下风电机组变频器参与次同步相互作用的分析与抑制[J]. 电工技术学报,2017,32(11): 38-47. [7] 杜文娟,王海风,曹军. PSS就地相位补偿法的模型和理论[J]. 中国电机工程学报,2012,32(19): 36-41. [8] Larsen E V,Swann D A.Applying power system stabilizers[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(6): 3017-3046. [9] Zhang Junbo,Chung C Y,Han Yingduo.A novel modal decomposition control and its application to PSS design for damping interarea oscillations in power systems[J]. IEEE Transactions on Power Systems,2012,27(4): 2015-2025. [10] 袁野,孙元章,程林. 基于多信号在线辨识的广域PSS协调设计[J]. 电力系统自动化,2010,34(8): 14-19. [11] 史慧杰,陈陈,陈迅,等. 基于灵敏度分析的电力系统稳定器参数优化[J]. 电力系统自动化,2012,36(17): 15-19. [12] 宗鹏鹏,王培秀,闫济红,等. 计及随机性的电网低频振荡实时修正控制研究[J]. 电气技术,2017,18(2): 25-30. [13] 胡晓波,杨利民,陈中,等. 基于人工鱼群算法的PSS参数优化[J]. 电力自动化设备,2009,29(2): 47-50. [14] 郭成,李群湛,王德林. 基于Prony和改进PSO算法的多机PSS参数优化[J]. 电力自动化设备,2009,29(3): 16-21. [15] Wang Z,Chung C Y,Wong K P,et al.Robust power system stabiliser design under multi-operating conditions using differential evolution[J]. IET Generation Transmission & Distribution,2008,2(5): 690-700. [16] 王昕,黄柯,郑益慧,等. 基于萤火虫算法-广义回归神经网络的光伏发电功率组合预测[J]. 电网技术,2017,41(2): 455-461. [17] Yang X S.Nature-inspired metaheutistic algo- rithms[M]. Luniver Press,2008. [18] 陈家俊,蒋铁铮,周勇,等. 考虑电压骤降的分布式电源定容和选址[J]. 电网技术,2014,38(8): 2244-2249. [19] 王晶,王宗礼,陈骏宇,等. 基于萤火虫优化算法的微网源-荷博弈模型及分析[J]. 电力系统自动化,2014,38(21): 7-12. [20] Farmer R G.Second benchmark model for computer simulation of subsynchronous resonance IEEE subsynchronous resonance working group of the dynamic system performance subcommittee power system engineering committee[J]. IEEE Power Engineering Review,1985,5(5): 34-34. |
|
|
|