|
|
Partial discharge fault identification of switchgear based on convolutional neural network |
Wang Feifei1, Ruan Aimin2, Wei Gang2, Sun Haibo2 |
1. Nanjing Institute of Technology, Nanjing 210000; 2. State Grid Zhenjiang Power Supply Company, Zhenjiang, Jiangsu 212000 |
|
|
Abstract The current classification algorithms for partial discharge faults are mostly shallow learning algorithms, and the features extracted manually directly affect the classification results. In contrast to shallow learning algorithms, deep learning has a deeper architecture that automatically learns features from samples. Convolutional neural networks are typical deep learning algorithms. This thesis aims to study the application of convolutional neural network in partial discharge of switchgear, and proves that deep learning architecture can effectively improve the recognition rate. In this experiment, two kinds of audible signals are collected, which are normal and faulty. After extracting the above two types of sound signals, they are respectively classified into SVM model and convolutional neural network for classification. The experimental results show that the convolutional neural network improves the accuracy of voice recognition compared with the traditional SVM.
|
Received: 05 September 2018
Published: 17 April 2019
|
|
|
|
Cite this article: |
Wang Feifei,Ruan Aimin,Wei Gang等. Partial discharge fault identification of switchgear based on convolutional neural network[J]. Electrical Engineering, 2019, 20(4): 76-81.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2019/V20/I4/76
|
[1] 林松, 邱雪梅, 李雍, 等. 综述电力设备局部放电方法研究[J]. 电工文摘, 2016(3): 60-64. [2] 唐云辉, 胡曦琳. 基于声信号分析的开关柜局部放电检测算法研究[J]. 电子器件, 2018(3): 644-648. [3] 邓帅, 祁建怀. 基于支持向量机的变电设备局部放电故障诊断研究[J]. 自动化与仪器仪表, 2018, 5(5): 24-27. [4] 刘鹏. 基于声谱图的公共场所异常声音特征提取及识别研究[D]. 重庆: 重庆大学, 2012. [5] 宋知用. Matlab语音信号分析与合成[M]. 北京: 北京航空航天大学出版社, 2018. [6] 余洋. 深度学习在局部放电模式识别中的应用[D]. 北京: 华北电力大学, 2016. [7] 唐炬, 林俊亦, 卓然, 等. 基于支持向量数据描述的局部放电类型识别[J]. 高电压技术, 2013(5): 1046-1053. [8] 符劲松. 基于可听声的变压器内部火花放电故障诊断研究[D]. 武汉: 华中科技大学, 2013. [9] 李博. 机器学习实践应用[M]. 北京: 人民邮电出版社, 2017. [10] 刘兵, 郑剑. 基于卷积神经网络的变压器局部放电模式识别[J]. 高压电器, 2017(5): 70-74, 81. [11] 陈伟凡, 陈晓亮, 高伟. 变电站10kV开关柜运行环境监控系统设计[J]. 电气技术, 2016, 17(9): 83-87, 97. [12] 郑荣生. 一起变电站异常局放信号的声电联合定位测试[J]. 电气技术, 2018, 19(4): 100-103, 107. [13] 邓海. 10kV配电开关柜局部放电的声电联合检测研究[J]. 电工技术, 2012(2): 69-71. |
|
|
|