|
|
Study on three-phase unbalanced load based on prediction in distribution area |
Wang Chunheng, Han Xiao, Luo Weizhen |
Nanjing Institute of Technology (Jiangsu Province Active Distribution Network Key Construction Laboratory), Nanjing 210000 |
|
|
Abstract Many methods are used to control three-phase unbalance in traditional distribution stations, but some adverse effects are ignored, such as the effect of commutation to loads, the count of use of commutation switch and the economy of distribution station area, etc. To solve above problems, a method based on load forecasting and commutation strategy is proposed to adjust loads. First, K-means is used to cluster historical daily load, then it forecasts short-term load based on historical datum which were counted by using Support Vector Machines, and calculates the degree of unbalance of three-phase load current when distribution transformer works. Finally, it establishes optimal commutation mathematical model which targets the least of unbalance degree of three-phase current and the least of usage frequency of commutation switch, and gets the best commutation scheme through genetic algorithm. This method can reduce line loss and three-phase load imbalance effectively, alleviate the problem of three-phase load imbalance in distribution area.
|
Received: 04 March 2019
Published: 12 September 2019
|
|
|
|
Cite this article: |
Wang Chunheng,Han Xiao,Luo Weizhen. Study on three-phase unbalanced load based on prediction in distribution area[J]. Electrical Engineering, 2019, 20(9): 10-13.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2019/V20/I9/10
|
[1] Tung N X, Fujia G, Horikoshi K.Phase load balancing in distribution power system using discrete passive compensator[J]. IEEJ Transactions on Electrical and Electronic Engineerig, 2010, 5(5): 539-547. [2] 周任军, 王蛟, 侯雪波, 等. 三相馈线损耗模型的相别优化调整方法[J]. 电力系统及其自动化学报, 2015, 27(4): 1-6. [3] 李惠玲, 盛万兴, 张学仁, 等. 改进小生境遗传算法在电力系统无功优化中的应用[J]. 电网技术, 2008, 32(17): 29-34. [4] 李大鹏, 杨秀媛, 张芳, 等. 基于遗传算法的风水协同发电控制[J]. 电气技术, 2017, 18(10): 46-51, 56. [5] 李立毅, 唐勇斌, 刘家曦, 等. 多种群遗传算法在无铁心永磁直线同步电机优化设计中的应用[J]. 中国电机工程学报, 2013, 33(15): 69-77, T8. [6] 崔挺, 孙元章, 徐箭, 等. 基于改进小生境遗传算法的电力系统无功优化[J]. 中国电机工程学报, 2011, 31(19): 43-50. [7] 邓惠华, 李国良, 周晓明, 等. 基于协调控制SVG的低压配网三相负荷不平衡治理技术[J]. 电工技术学报, 2017, 32(S1): 75-83. [8] 张亮, 徐魁, 陈刚, 等. 一种用户侧智慧型电能质量综合治理装置的设计与应用[J]. 电力电容器与无功补偿, 2017, 38(6): 23-27. [9] 丁越, 田恒, 侯亚军, 等. 配网无功补偿及三相负荷不平衡调平装置的研究与应用[J]. 电气技术, 2017, 18(8): 110-113. [10] 方恒福, 盛万兴, 王金丽, 等. 配电台区三相负荷不平衡实时在线治理方法研究[J]. 中国电机工程学报, 2015, 35(9): 2185-2193. [11] 陆惠斌, 徐勇, 伍宇翔, 等. 基于换相技术的三相不平衡治理装置研究[J]. 电力电容器与无功补偿, 2016, 37(6): 64-69. [12] 郭兆成, 车建涛, 郭启栋, 等. 基于低压配网功率和用电量信息的三相不平衡负荷调整[J]. 电力系统保护与控制, 2018, 46(21): 86-95. [13] 高靖, 张明理, 邓鑫阳, 等. 基于特征聚类的多能源系统负荷预测方法研究[J]. 可再生能源, 2019(2): 232-236. [14] 王小君, 毕圣, 徐云鹍, 等. 基于数据挖掘技术和支持向量机的短期负荷预测[J]. 电测与仪表, 2016, 53(10): 62-67. [15] 万强, 王清亮, 王睿豪, 等. 基于支持向量机的某地区电网短期电力负荷预测[J]. 电网与清洁能源, 2016, 32(12): 14-20. [16] 陈宏义, 李存斌, 施立刚. 基于聚类分析的短期负荷智能预测方法研究[J]. 湖南大学学报(自然科学版), 2014, 41(5): 94-98. |
|
|
|