|
|
The discussion of location method based on longitudinal current characteristics for gas-insulated metal enclosed transmission line project |
Chen Xiaobin1, Huang Xin2, Gao Rui2 |
1. Jieyang Power Supply Bureau, Guangdong Power Grid Co., Ltd, Jieyang, Guangdong 522000; 2. Beijing Sifang Automation Co., Ltd, Beijing 100085 |
|
|
Abstract This article introduces several principles of fault location in the case of gas-insulated metal enclosed transmission line (GIL) grounding short circuit. After analyzing the grounding condition of a 5.8km long GIL project, a new positioning principle is established, and the positioning method based on the longitudinal current characteristics is explained in detail, and the concrete implementation methods are given. The location method based on longitudinal current characteristics mainly identifies the amplitude and phase characteristics of power frequency grounding current. The distributed vector acquisition structure is adopted in the positioning system. It has the advantages of N redundancy, high reliability, simple principle, convenient wiring and maintenance.
|
Received: 27 February 2019
Published: 19 November 2019
|
|
|
|
Cite this article: |
Chen Xiaobin,Huang Xin,Gao Rui. The discussion of location method based on longitudinal current characteristics for gas-insulated metal enclosed transmission line project[J]. Electrical Engineering, 2019, 20(11): 101-106.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2019/V20/I11/101
|
[1] 张姝, 林圣, 唐进, 等. 基于双层阻抗模型的三相单芯电缆自恢复故障定位[J]. 电工技术学报, 2016, 31(17): 1-10. [2] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅰ: 测量技术及积聚机理[J]. 电工技术学报, 2018, 33(20): 4649-4662. [3] 宋晓斌, 陈剑青, 李天华, 等. 核电厂运行中GIL竖向形变的监控与校正策略[J]. 电气技术, 2017, 18(5): 82-86. [4] 陈敏, 白尧, 汪涛, 等. GIS设备击穿放电定位技术研究与现场应用[J]. 高压电器, 2014, 50(6): 81-90. [5] 邵先军, 何文林, 徐华, 等. 550kV GIS现场交流耐压试验下放电故障的定位与分析研究[J]. 高压电器, 2014, 50(11): 30-37. [6] 季严松, 王承玉, 杨韧, 等. SF6气体分解产物检测技术及其在GIS设备故障诊断中的应用[J]. 高压电器, 2011, 47(2): 100-103, 107. [7] 韩玉停. SF6分解产物在GIS设备故障定位中的应用[J]. 通讯世界, 2014(22): 163-164. [8] 淮南~南京~上海1000千伏交流特高压输变电工程苏通GIL管廊工程初步设计[Z]. 电力规划设计总院, 2016. [9] 李瑾, 王渝红, 梁晓斌, 等. 直流接地极入地电流在交流系统中的通路构成及计算方法综述[J]. 四川电力技术, 2017, 40(2): 34-40. [10] 杜学龙, 仇天骄, 张晓颖, 等. 电缆隧道中盾构接地系统特性分析及其与人工接地系统的对比[J]. 电网技术, 2015, 39(6): 1568-1572. [11] 杜学龙, 仇天骄, 张晓颖, 等. 电缆隧道中盾构接地系统接地电阻计算及测量[J]. 电工电能新技术, 2017, 36(7): 84-88. [12] 赵周鉴. 长大隧道内牵引回流分布与钢轨电位计算分析[D]. 成都: 西南交通大学, 2014. [13] 张波, 何金良, 曾嵘. 电力系统接地技术现状及展望[J]. 高电压技术, 2015, 41(8): 2569-2582. |
|
|
|