|
|
Day-ahead wind power combination prediction based on empirical mode decomposition method to optimize support vector machine model |
Xia Shuyue, Dong Xinyi |
School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167 |
|
|
Abstract In order to solve the problem of wind power output forecast in wind farm, a combined short-term wind power forecast method based on empirical mode decomposition and support vector machine (SVM) algorithm is applied. First empirical mode decomposition method is used to decompose wind power data sequence into a series of relatively stable component, in order to reduce the mutual influence between different characteristic information, and then the optimization of support vector machine method is adopted for the decomposition of each component of the sequence prediction model, respectively, for each component characteristics choose different kernel functions and parameters in order to obtain the best prediction accuracy of a single component. Finally, the prediction results of each component of superposition forms the projections wind power in the end. Numerical examples show that the combined algorithm is more accurate than other single forecasting methods.
|
Received: 02 September 2019
Published: 20 March 2020
|
|
|
|
Cite this article: |
Xia Shuyue,Dong Xinyi. Day-ahead wind power combination prediction based on empirical mode decomposition method to optimize support vector machine model[J]. Electrical Engineering, 2020, 21(3): 11-15.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I3/11
|
[1] 陶玉波, 陈昊, 秦晓辉, 等. 短期风电功率预测概念和模型与方法[J]. 电力工程技术, 2018, 37(5): 7-13. [2] 孙元章, 吴俊, 李国杰. 风力发电对电力系统的影响(英文)[J]. 电网技术, 2007(20): 55-62. [3] 杨林, 杨修宇, 涂娇娇, 等. 风电出力特性及其对电力系统运行的影响分析[J]. 智能电网, 2014, 2(5): 18-22. [4] 孙欣, 方陈, 沈风, 等. 考虑风电出力不确定性的发用电机组组合方法[J]. 电工技术学报, 2017, 32(4): 204-211. [5] 程启明, 陈路, 程尹曼, 等. 基于EEMD和LS-SVM模型的风电功率短期预测方法[J]. 电力自动化设备, 2018, 38(5): 27-35. [6] 王雨, 苏适, 严玉廷. 基于Kalman滤波和BP神经网络的光伏超短期功率预测模型[J]. 电气技术, 2014, 15(1): 42-46. [7] Rajagopalan S, Santoso S.Wind power fore-casting and error analysis using the autoregressive mov-ing average modeling[C]//2009 IEEE Power & Energy Society Gen- eral Meeting, 2009: 1-6. [8] 陈昊, 万秋兰, 王玉荣. 基于厚尾均值广义自回归条件异方差族模型的短期风电功率预测[J]. 电工技术学报, 2016, 31(5): 91-98. [9] 修春波, 任晓, 李艳晴, 等. 基于卡尔曼滤波的风速序列短期预测方法[J]. 电工技术学报, 2014, 29(2): 253-259. [10] 李贞, 崔丽艳, 陶颍军, 等. 基于博弈论赋权的光伏功率组合预测模型[J]. 电气技术, 2017, 18(5): 24-29. [11] 张磊, 陈国恩, 王跃强. 基于相似日重组的分布式光伏电源发电功率预测[J]. 电气技术, 2016, 17(2): 62-66. [12] 付菊霞, 陈洁, 滕扬新, 等. 基于集合经验模态分解的风电混合储能系统能量管理协调控制策略[J]. 电工技术学报, 2019, 34(10): 2038-2046. [13] 叶林, 赵永宁. 基于空间相关性的风电功率预测研究综述[J]. 电力系统自动化, 2014, 38(14): 126-135. [14] 李燕青, 袁燕舞, 郭通. 基于AMD-ICSA-SVM的超短期风电功率组合预测[J]. 电力系统保护与控制, 2017, 45(14): 113-120. [15] 田中大, 李树江, 王艳红, 等. 基于小波变换的风电场短期风速组合预测[J]. 电工技术学报, 2015, 30(9): 112-120. [16] 叶林, 刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报, 2011, 31(31): 102-108. [17] Wu Z H, Huang N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. [18] 胡智强, 黄南天, 王文婷, 等. 基于布谷鸟搜索优化支持向量机的短期负荷预测[J]. 水电能源科学, 2016, 34(12): 209-212. |
|
|
|