|
|
Suppressing radiated noise of unshielded cable on the relay protection test signal source research |
Feng Xiaowei1, Wang Bentao1, Liu Huanqiang2, Dong Jinxing1, Liu Xiang1 |
1. State Grid Inner Mongolia Eastern Power Co., Ltd, Hohhot 010010; 2. Shandong Shanda Power Technology Co., Ltd, Ji'nan 250101 |
|
|
Abstract In order to meet the electromagnetic radiation emission limit requirements in the relay protection test signal source technical specification, the method of suppressing the common mode current on the unshielded cable is proposed for the current relay protection test signal source connection switch quantity and the analog cable radiation emission exceeding the standard problem. To reduce the radiated emission noise. Based on electromagnetic wave and antenna theory, a circuit model of relay protection tester and radiation transmission of unshielded cable is established. The main circuit parameters affecting the radiation emission intensity are analyzed. The results show that common mode radiation emission is in the range of 30~100MHz. The noise source is stronger than the differential mode radiation emission source and according to the characteristics of the common mode radiation emission circuit model, three processing methods for suppressing the common mode current of the cable are given, that is, the size of the common mode current is reduced and reduced. The frequency of the small current harmonic component reduces the length of the cable. The test results show that the method of suppressing the cable common mode current can reduce the radiation emission by 22dB, and has the characteristics of simple circuit processing and strong generality.
|
Received: 26 August 2019
Published: 20 March 2020
|
|
|
|
Cite this article: |
Feng Xiaowei,Wang Bentao,Liu Huanqiang等. Suppressing radiated noise of unshielded cable on the relay protection test signal source research[J]. Electrical Engineering, 2020, 21(3): 44-51.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I3/44
|
[1] Clayton R P.电磁兼容导论[M]. 闻映红, 等译. 北京: 人民邮电出版社, 2007. [2] 于丽新, 李超, 杜佳, 等. 辽宁省某典型500kV变电站电磁污染分布特性研究[J]. 环境科学与技术, 2013(增刊1): 90-94, 116. [3] 于丽新, 邵枫, 李超, 等. 500kV户外型变电站作业场所电磁环境实测分析[J]. 环境工程, 2016, 34(6): 168-172. [4] 谢处方, 饶克谨. 电磁场与电磁波[M]. 4版. 北京: 高等教育出版社, 2006. [5] 黄玉兰. 电磁场与微波技术[M]. 北京: 人民邮电出版社, 2007. [6] Henry W O.电磁兼容工程[M]. 邹澎, 等译. 北京: 清华大学出版社, 2013. [7] 吕英华. 计算电磁学的数值方法[M]. 北京: 清华大学出版社, 2006. [8] Stutzman W L, Thiele G A.天线理论与设计[M]. 朱守正, 安同一, 译. 北京: 人民邮电出版社, 2006. [9] GB/T 14598.26—2015. 量度继电器和保护装置第26部分: 电磁兼容要求[S]. [10] Kodali V P.工程电磁兼容: 原理, 测试, 技术工艺及计算机模型[M]. 陈淑风, 等译. 北京: 人民邮电出版社, 2006. [11] Montrose M I.电磁兼容的印制电路板设计[M]. 吕英华, 于学萍, 张金玲, 等译. 北京: 机械工业出版社, 2008. [12] Wakileh G J.电力系统谐波:基本原理,分析方法和滤波器设计[M]. 徐政, 译. 北京: 机械工业出版社, 2011. [13] Williams T.产品设计中的EMC技术[M]. 李迪, 王培清, 译. 北京: 电子工业出版社, 2004. [14] Caniggia S.高速数字系统的信号完整性和辐射发射[M]. 崔强, 等译. 北京: 机械工业出版社, 2010. [15] 波扎. 微波工程[M]. 北京: 电子工业出版社, 2015. [16] 白旭升, 董纪清. 基于有限元分析的共模扼流圈漏感计算研究[J]. 电气技术, 2017, 18(1): 18-22. [17] 陈开宝, 陈为. 环形共模电感近磁场泄漏分析[J]. 电气技术, 2017, 18(2): 41-45, 92. [18] 高欣欣, 王世山, 娄千层, 等. 基于“一致性”原则的“场-多导体”传输线辐射敏感度测试的等效理论及实现[J]. 电工技术学报, 2018, 33(7): 1588-1598. [19] 贾晋, 赖志达, 王瑞妙, 等. 共模电流扫描法在汽车电子部件电磁辐射预测中的研究与应用[J]. 电工技术学报, 2018, 33(8): 1674-1684. |
|
|
|