|
|
Research on multi-objective task scheduling algorithm for electromagnetic cloud computing |
Jin Liang, Wang Jingtao, Liu Xiangzhen, Feng Wei |
Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy Tiangong University, Tianjin 300387 |
|
|
Abstract With the development of cloud computing in the field of high-performance computing, large-scale electromagnetic finite element and multi-sample computing are gradually completed by cloud computing. Therefore, cloud computing task scheduling, especially multi-target task scheduling, has become an important issue to be solved. The multi-objective task scheduling algorithm optimizes the three objectives of maximum computing completion time, total machine load and maximum machine load. In this paper, Aiming at the indivisibility of electromagnetic finite element single sample computation, a multi-group hybrid algorithm is proposed. Making use of multi-attribute decision model based on weighted grey target to select the most satisfied cloud platform task scheduling solution. This paper obtains the optimal CPU core number and memory allocation by running three cases of finite element calculation on the cloud platform. The feasibility and effectiveness of the algorithm are verified by test benchmarks and actual cases. The finite element efficient calculation and the full utilization of resources are realized on the cloud platform.
|
Received: 29 October 2019
Published: 16 April 2020
|
|
|
|
Cite this article: |
Jin Liang,Wang Jingtao,Liu Xiangzhen等. Research on multi-objective task scheduling algorithm for electromagnetic cloud computing[J]. Electrical Engineering, 2020, 21(4): 44-49.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I4/44
|
[1] 张文, 郑晓钦, 吴新振. 多相感应电机三维电磁分析与损耗计算[J]. 电工技术学报, 2018, 33(增刊2): 331-337. [2] 梁振光, 唐任远. 大型变压器三维瞬态涡流场场路耦合模型[J]. 电工技术学报, 2003, 18(5): 17-22. [3] Zhao Yong, Li Chenliang, Li Youfu, et al.Efficient task scheduling for many task computing with resource attribute selection[J]. China Communications, 2014, 11(12): 125-140. [4] Wang Weijie, Xu Ran, Li Hanyu, et al.Massively parallel simulation of large-scale electromagnetic problems using one high-performance computing scheme and domain decomposition method[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(5): 1523-1531. [5] Wolski R, Brevik J.Using parametric models to represent private cloud workloads[J]. IEEE Transa- ctions on Services Computing, 2014, 7(4): 714-725. [6] 王德文, 刘杨. 一种电力云数据中心的任务调度策略[J]. 电力系统自动化, 2014, 38(8): 61-66, 97. [7] 刘巍, 黄曌, 李鹏, 等. 面向智能配电网的大数据统一支撑平台体系与构架[J]. 电工技术学报, 2014, 29(增刊1): 486-491. [8] Lin Xiangyu, Wu CQ.On scientific workflow scheduling in clouds under budget constraint[C]//2013 42nd Annual International Conference on Parallel Processing (ICPP), 2013: 90-99. [9] Luo Xiaochuan, Zhang Song, Litvinov E.Practical design and implementation of cloud computing for power system planning studies[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 2301-2311. [10] 张鹏, 李春燕, 张谦. 基于需求响应调度容量上报策略博弈的电网多代理系统调度模式[J]. 电工技术学报, 2017, 32(19): 170-179. [11] 路欣怡, 刘念, 陈征, 等. 电动汽车光伏充电站的多目标优化调度方法[J]. 电工技术学报, 2014, 29(8): 46-56. [12] Mezmaz M, Melab N, Kessaci Y, et al.A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems[J]. Journal of Parallel and Distributed Computing, 2011, 71(11): 1497-1508. [13] 杨柳青, 林舜江, 刘明波. 大电网多目标动态优化调度的解耦算法及并行计算[J]. 电工技术学报, 2016, 31(6): 177-186. [14] Kacem I, Hammadi S, Borne P.Approach by locali- zation and multiobjective evolutionary optimization for flexible job-shop scheduling problems[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 2002, 32(1): 1-13. [15] 张国辉, 石杨. 基于改进遗传算法求解柔性作业车间调度问题[J]. 机械科学与技术, 2011, 45(11): 1890-1894. [16] Xia Weijun, Wu Zhiming.An effective hybrid optimi- zation approach for multi-objective flexible job-shop scheduling problems[J]. Computers & Industrial Engin- eering, 2005, 48(2): 409-425. |
|
|
|