|
|
Loss and temperature rise analysis of robot permanent magnet motor based on field-circuit coupling |
Zhu Tianli, Han Xueyan, Zhu Longfei |
National Engineering Center of Permanent Magnet Motor of Shenyang University of Technology, Shenyang 110870 |
|
|
Abstract Robot permanent magnet servo motor is usually powered by frequency converter, which contains a lot of harmonics compared with standard sine wave. At the beginning of motor design, the research method of sine wave power supply can not really reflect the loss of permanent magnet motor. In order to simulate the operation of permanent magnet servo motor more truly, the method of field-circuit coupling is used to study the loss and temperature rise of permanent magnet servo motor. The control circuit of Id=0 is constructed in Simplorer and co-simulated with Maxwell. Firstly, taking a robot permanent magnet motor of 2.1kW 4000r/min as an example, it is verified that the field-circuit coupling method has great advantages over the time-step finite element method. Then the loss of a 1kW 3000r/min surface-mounted robot permanent magnet motor under different speed and load is analyzed, and a three-dimensional analysis model is established to analyze the temperature rise of the motor under different speed and load by finite element method.
|
Received: 16 November 2019
|
|
|
|
Cite this article: |
Zhu Tianli,Han Xueyan,Zhu Longfei. Loss and temperature rise analysis of robot permanent magnet motor based on field-circuit coupling[J]. Electrical Engineering, 2020, 21(6): 7-12.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I6/7
|
[1] 张琪, 鲁茜睿, 黄苏融, 等. 多领域协同仿真的高密度永磁电机温升计算[J]. 中国电机工程学报, 2014, 34(12): 1874-1881. [2] 张宸菥, 陈立芳, 王维民, 等. 高速电动机损耗分析及温度场计算[J]. 电气技术, 2017, 18(5): 44-50. [3] 陈招兵, 王榕生. SVPWM逆变器谐波数值分析[J].电气技术, 2018, 19(3): 60-64, 69. [4] 李博, 张代润. 基于改进SVPWM控制的三相Split源逆变器研究[J]. 电气技术, 2018, 19(1): 15-19. [5] 张经纬, 柳长江, 祝后权. PWM供电时高速永磁电机的谐波特征及损耗研究[J]. 大电机技术, 2018(6): 18-22. [6] 佟文明, 王云学, 贾建国, 等. 变频器供电内置式永磁同步电机转子损耗计算与试验[J]. 电工技术学报, 2018, 33(24): 5811-5820. [7] 朱高嘉. 有限公式耦合方法及在永磁电机冷却系统分析中的应用[D]. 沈阳: 沈阳工业大学, 2017. [8] 佟文明, 舒圣浪, 朱高嘉, 等. 电机三维温度场的有限公式法计算技术[J]. 中国电机工程学报, 2017, 37(7): 2131-2142. [9] Traxler-Samek G, Zickermann R, Der S A.Cooling airflow, losses, and temperature in large air-cooled synchronous machines[J]. IEEE Transactions on Industia Electronics, 2010, 57(1): 172-180. [10] Staton D A, Cavagnino A.Convection heat transfer and flow calculations suitable for electric machines thermal models[J]. IEEE Transactions on Industrial Electronics, 2008, 55(10): 3509-3516. [11] Zhang B, Qu R, Wang J, et al.Thermal model of totally enclosed water-cooled permanent-magnet synchronous machines for electric vehicle appli-cation[J]. IEEE Transactions on Industry Applications, 2014, 51(4): 3020-3029. [12] 刘毓希, 李立毅, 曹继伟, 等. 短时高过载永磁同步电机电磁热研究[J]. 电工技术学报, 2019, 34(11): 2296-2305. [13] 王小飞, 代颖, 罗建. 基于流固耦合的车用永磁同步电机水道设计与温度场分析[J]. 电工技术学报, 2019, 34(增刊1): 22-29. [14] 吴柏禧, 万珍平, 张昆, 等. 考虑温度场和流场的永磁同步电机折返型冷却水道设计[J]. 电工技术学报, 2019, 34(11): 2306-2314. [15] 韩雪岩, 张华伟, 徐昕, 等. 基于计算流体力学的非晶合金轴向磁通永磁电机冷却系统设计[J]. 电工技术学报, 2017, 32(20): 189-197. |
|
|
|