|
|
Research and field application on discharge identification algorithm of characteristic spectrum time-frequency signal |
Zhou Xiong1, Zhou Zemin1, Peng Yanjun1, Teng Benke1, Tang Ming2 |
1. Guangxi Power Grid Co., Ltd, Guilin Power Supply Bureau, Guilin, Guangxi 541002; 2. Zhuhai Huanet Technology Co., Ltd, Zhuhai, Guangdong 510382 |
|
|
Abstract High-voltage electrical equipment, the local discharge of the field detection process, usually mixed with a variety of interference signals, which will be part of the discharge fault analysis and judgment difficult. The effective suppression of the interference signal is a prerequisite for partial discharge mode identification and fault judgment. Based on the time-frequency distribution characteristics of partial discharge signals, the equivalent duration and the equivalent frequency bandwidth are used to characterize the time-frequency characteristics of partial discharge wideband pulse waveforms, and the equivalent time-frequency spectrum is constructed. The partial discharge signals of high voltage switchgear are classified by feature map classification method. Finally, the validity of this method is verified by experiments.
|
Received: 14 October 2019
|
|
|
|
Cite this article: |
Zhou Xiong,Zhou Zemin,Peng Yanjun等. Research and field application on discharge identification algorithm of characteristic spectrum time-frequency signal[J]. Electrical Engineering, 2020, 21(6): 63-68.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I6/63
|
[1] Cavallini A, Contin A, Montanari G C, et al.Advanced PD inference in on-field measurements. I. Noise rejection[J]. IEEE Trans. Dielectr. Electr. Insul., 2003, 10: 216-224. [2] Partial discharge detection in medium voltage and high voltage cables: maximum distance for detection, length of cable,some answers[J]. IEEE Electrical Insulation Magazine, 2016, 32(5): 41-46. [3] Cavallini A, Montanari G C, Puletti F.A novel method to locate PD in polymeric cable systems based on amplitude-frequency (AF) Map[J]. IEEE Trans. Dielectr. Electr. Insul., 2007, 14(3): 726-734. [4] 于洪乾, 闫祥申, 祝世辉, 等. 局部放电检测在开关柜中的应用[J]. 电气技术, 2015, 16(6): 123-125. [5] 祝丽业. 局部放电信号干扰抑制与识别方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. [6] 卞超, 陈少波. 基于脉冲电流波形的GIS局部放电检测抗干扰技术研究[J]. 高压电器, 2010, 46(5): 30-33. [7] 何平. 变压器内部放电故障诊断系统的设计与研究[J]. 电气技术, 2016, 17(4): 97-100. [8] 王振远, 谈克雄, 朱德恒, 等. 根据脉冲波形特征识别几种典型模型放电的研究[J]. 电工技术学报, 1997, 12(6): 35-38. [9] 王彩雄, 唐志国, 常文治, 等. 一种多源局部放电信号分离方法[J]. 中国电机工程学报, 2013, 33(13): 212-219, 前插26. [10] 鲍永胜. 局部放电脉冲波形特征提取及分类技术[J]. 中国电机工程学报, 2013, 33(28): 168-175. [11] 葛哲学, 陈仲生. Matlab时频分析技术及其应用[M]. 北京: 人民邮电出版社, 2006. [12] 王猛, 谈克雄, 高文胜, 等. 局部放电脉冲波形的时频联合分析特征提取方法[J]. 电工技术学报, 2002, 17(2): 76-79. [13] 邱鹏锋, 郑连清, 魏成伟. 一种GIS局部放电模式识别新方法及应用[J]. 电气技术, 2017, 18(8): 12-16. [14] 陈敬德, 李峰, 孙源文, 等. 基于KNN和MSR的局部放电模式识别研究[J]. 电气技术, 2018, 19(1): 10-14. [15] 李端姣, 朱文俊, 王红斌, 等. 变电站全站局部放电检测中多源信号分离方法[J]. 南方电网技术, 2013, 7(2): 91-95. [16] 夏云峰, 高胜友, 陈锡阳, 等. 波形特征与统计特征相结合的局部放电脉冲分类方法[J]. 高压电器, 2015, 51(8): 146-151. [17] 鲍永胜, 郝峰杰, 徐建忠, 等. GIS局部放电脉冲分类特征提取算法[J]. 电工技术学报, 2016, 31(9): 181-188. [18] 陈贤熙. 特征图谱分类法在避雷器局部放电测试分析中的应用[J]. 绝缘材料, 2015, 48(9): 65-69. [19] 司文荣, 李军浩, 杨景刚, 等. 局部放电脉冲群的实用快速分类技术及应用[J]. 西安交通大学学报, 2008, 42(8): 1021-1025, 1060. [20] 刘耀年, 伏祥运, 张文生, 等. 基于模糊识别与模糊聚类理论的短期负荷预测[J]. 电工技术学报, 2002, 17(5): 83-86, 95. |
|
|
|