|
|
Distribution line fault location method based on micro-synchronous phasor unit data |
Liu Shuxin1, Zhuo Yu1, Li Jin2, Tian Ersheng2, Liu Yang2 |
1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870; 2. State Grid XJ Group Corporation, Xuchang, He’nan 461000 |
|
|
Abstract In order to accurately determine the location of the short circuit fault point of the distribution line, this paper establishes a mathematical model for distribution line parameter identification and fault location based on the consideration of phase-to-phase coupling, three-phase unbalance, and ground capacitance factors, and proposes a Combined with adaptive genetic algorithm, first parameter identification and then fault location algorithm. Carry out simulation analysis in PSCAD/EMTDC, analyze and compare the error of parameter identification and its impact on the final ranging, analyze the impact of different line types, short-circuit fault types, transition resistance, fault initial angle, etc. on the algorithm and compare it with traditional ranging algorithms In comparison, the ranging results prove that the algorithm proposed in this paper has higher ranging accuracy and effectively overcomes the shortcomings of the existing ranging method for large cable line ranging errors.
|
Received: 08 April 2020
|
|
|
|
Cite this article: |
Liu Shuxin,Zhuo Yu,Li Jin等. Distribution line fault location method based on micro-synchronous phasor unit data[J]. Electrical Engineering, 2020, 21(10): 63-70.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I10/63
|
[1] 丁芃, 朱珂, 朱裕庆, 等. 基于模型辨识的配电线路永久性故障判定方法[J]. 电工技术学报, 2019, 34(5): 1004-1012. [2] 唐金锐, 尹项根, 张哲, 等. 配电网故障自动定位技术研究综述[J]. 电力自动化设备, 2013, 33(5): 7-13. [3] Bogdan P, Quinlan M, Reinhard K.Low voltage micro-phasor measurement unit (μBC; PMU)[C]// 2015 IEEE Power and Energy Conference at Illinois (PECI). Champaign, IL, 2015: 1-4. [4] Ching-Chuan L, Chih-Wen L.Design and implementa- tion of dual time synchronization signal for micro phasor measurement unit (μPMU)[C]//2016 IEEE Inter- national Instrumentation and Measurement Techno- logy Conference Proceedings, 2016: 1-6. [5] 李江, 魏文震, 陈继开. 基于CML的配电网μPMU相量测量算法[J]. 南方电网技术, 2017, 11(7): 58-67. [6] 罗深增, 李银红, 石东源. 广域测量系统可观性概率评估及其在PMU优化配置中的应用[J]. 电工技术学报, 2018, 33(8): 1844-1853. [7] Wache M, Murray DC.Application of synchrophasor measurements for distribution networks[C]//2011 IEEE Power and Energy Society General Meeting, MI: IEEE, 2011: 1-4. [8] Cavraro G, Arghandeh R, Poolla K, et al.Data-driven approach for distribution network topology detection[C]// 2015 IEEE Power & Energy Society General Meeting, Denver, CO, 2015: 1-5. [9] 刘永军, 刘敏. 配电网下基于PMU量测的混合故障测距法[J]. 电测与仪表, 2016, 53(17): 39-43. [10] 李昂, 刘亚东, 孙鹏, 等. 基于μPMU相位数据的配电网拓扑识别方法[J]. 智慧电力, 2017, 45(11): 31-36. [11] 刘洋, 曹云东, 侯春光. 基于经验模态分解及维格纳威尔分布的电缆双端故障定位算法[J]. 中国电机工程学报, 2015, 35(16): 4086-4093. [12] 崔超奇, 王占山, 杨东升, 等. 基于小波变换的输电线故障定位与选相方法[J]. 控制工程, 2017, 24(增刊1): 85-91. [13] 徐嘉伟. 基于可控信号注入的小电流接地系统单相接地故障定位方法研究[D]. 重庆: 重庆大学, 2018. [14] 黄丽娜. 气象条件对架空输电线路参数的影响及校正方法研究[D]. 保定: 华北电力大学, 2019. [15] 郝玉山. 输电线路参数辨识[M]. 北京: 中国电力出版社, 2017. [16] 靳丹, 王维洲, 曹俊龙, 等. 基于改进自适应变异概率遗传算法的无功优化方法[J]. 中国电业: 技术版, 2012(7): 6-10. |
|
|
|