|
|
Research on electricity sales forecast of substation based on combined model |
Liu Cheng, Chen Guangyu, Zhang Yangfei |
School of Electric Power Engineering,Nanjing Institute of Technology,Nanjing 211167 |
|
|
Abstract Due to the cross-effects of various factors, the electricity sales of distribution substations have irregular fluctuations in their time series, and it is difficult to directly predict their satisfactory results. In this paper, a method for forecasting the electricity sales of distribution stations based on a combined model is proposed. First, variational mode decomposition (VMD) is used to decompose the time series of electricity sales of distribution stations into low-frequency modes and high-frequency modes to reduce time series Non-stationarity; secondly, the Prophet time series prediction model and gated recurrent unit (GRU) neural network are used to predict each mode; finally, the prediction results of high-frequency and low-frequency modes are summed and reconstructed To get the forecast result of the electricity sales amount of the substation. The simulation example selects the daily electricity sales data of a power distribution station in the east of China in recent years for verification. The results show that the proposed method has better accuracy than the traditional prediction method.
|
Received: 08 May 2020
|
|
|
|
Cite this article: |
Liu Cheng,Chen Guangyu,Zhang Yangfei. Research on electricity sales forecast of substation based on combined model[J]. Electrical Engineering, 2020, 21(11): 25-31.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I11/25
|
[1] 魏波,胡海涛,王科,等.基于实测数据和行车运行图的高铁牵引变电站负荷预测方法[J].电工技术学报,2020,35(1):179-188. [2] 吴润泽,包正睿,王文韬,等.Hadoop架构下基于模式匹配的短期电力负荷预测方法[J].电工技术学报,2018,33(7):1542-1551. [3] 陆海,罗凤章,杨欣,等.基于数据驱动理念的电力日负荷曲线预测方法研究[J].电力系统及其自动化学报,2020,32(1):42-49. [4] 黄晗,孙堃,刘达.基于随机森林的电力系统小时负荷预测研究[J].智慧电力,2018,46(5):8-14. [5] 吕海灿,王伟峰,赵兵,等.基于Wide & Deep-LSTM模型的短期台区负荷预测[J].电网技术,2020,44(2):428-436. [6] Haq M R,Ni Z.A new hybrid model for short-term electricity load forecasting[J].IEEE Access,2019:125413-125423. [7] 邹品晶,姚建刚,孔维辉,等.基于多变量时间序列反演自记忆模型的中长期电力负荷预测[J].电力系统及其自动化学报,2017,29(10):98-105. [8] 黄溜.电网短期负荷预测及水火混合系统非线性经济调度[D].武汉:华中科技大学,2018. [9] Dragomiretskiy K,Zosso D.Variational mode decom-position[J].IEEE Transactions on Signal Processing,2014,62(3):531-544. [10] 杨洪军,徐娟娟,刘杰.基于VMD和GRNN的混沌时间序列预测[J].计算机仿真,2019,36(3):448-452. [11] 王粟,江鑫,曾亮,等.基于VMD-DESN-MSGP模型的超短期光伏功率预测[J].电网技术,2020,44(3):917-925,中插6. [12] 李丽萍,段桂华,王建新.基于Prophet框架的银行网点备付金预测方法[J].中南大学学报:自然科学版,2019,50(1):75-82. [13] Cho.Kyunghyun & van Merriënboer[Z].2014:10. [14] 王文广,赵文杰.基于GRU神经网络的燃煤电站NOx排放预测模型[J].华北电力大学学报:自然科学版,2020,47(1):96-103. [15] Yu Li,Ziang M,Pan Zhiwen,et al.Prophet model and Gaussian process regression based user traffic predi-ction in wireless networks[J].Science China Infor-mation Sciences,2020,63(4):203-210. [16] 郝俊虎,胡毅,崔宁宁,等.GRU-BP在数字化车间关键部件寿命预测中的研究[J].小型微型计算机系统,2020,41(3):637-642. [17] 王斌.基于时间序列ARIMA模型的电力负荷短期预测分析[J].石河子科技,2019(3):43-47. [18] 罗莉莉,邱泽晶,陈焕新,等.基于SVR模型的湖北省“十三五”期间电能需求预测[J].电力需求侧管理,2017,19(3):31-34. |
|
|
|