|
|
Wind power prediction based on support vector machine trained by improved particle swarm optimization |
Zhao Qian, Chen Fangfang, Gan Lu |
Yunnan Minzu University, Kunming 650504 |
|
|
Abstract Wind power generation is one of the key points in the development of new energy. Accurate wind power prediction directly affects the stability of power grid, so it is necessary to study wind power prediction. Aiming at the problem of low prediction accuracy, an improved particle swarm optimization (IPSO) algorithm is putting forward to optimize the prediction method of support vector machine. As the penalty factor and kernel function parameter selection of support vector machine have a great influence on the prediction accuracy, Therefore, the improved particle swarm optimization algorithm is used to optimize the parameters of the support vector machine, And then they are used for modeling training, the built model is applied to the wind power prediction, and finally the results are analyzed. The prediction results show that the improved particle swarm optimization optimized support vector machine has better accuracy for wind power prediction.
|
Received: 09 May 2020
|
|
|
|
Cite this article: |
Zhao Qian,Chen Fangfang,Gan Lu. Wind power prediction based on support vector machine trained by improved particle swarm optimization[J]. Electrical Engineering, 2020, 21(12): 12-16.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I12/12
|
[1] 田云飞, 张立涛, 徐昊亮. 大规模风电并网对电力系统的影响及应对措施[J]. 电气自动化, 2013, 35(3): 54-56. [2] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29): 5029-5040. [3] 冯双磊, 王伟胜, 刘纯, 等. 基于物理原理的风电场短期风速预测研究[J]. 太阳能学报, 2011, 32(5): 611-616. [4] 杨茂, 孙涌, 王东, 等. 基于时间序列的多采样尺度风电功率多步预测研究[J]. 电测与仪表, 2014, 51(23): 55-59, 109. [5] 刘兴杰, 岑添云, 郑文书, 等. 基于模糊粗糙集与改进聚类的神经网络风速预测[J]. 中国电机工程学报, 2014, 34(19): 3162-3169. [6] 王贺, 胡志坚, 张翌晖, 等. 基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测[J]. 电工技术学报, 2014, 29(4): 237-245. [7] 刘爱国, 薛云涛, 胡江鹭, 等. 基于GA优化SVM的风电功率的超短期预测[J]. 电力系统保护与控制, 2015, 43(2): 90-95. [8] 廖旎焕, 胡智宏, 马莹莹, 等. 电力系统短期负荷预测方法综述[J]. 电力系统保护与控制, 2011, 39(1): 147-152. [9] 郭茜, 匡洪海, 王建辉, 等. 单机风电功率人工智能预测模型综述[J]. 电气技术, 2020, 21(2): 1-6. [10] 吴金浩, 杨秀媛, 孙骏. 基于主成分分析法的风电功率短期组合预测[J]. 电气技术, 2016, 17(7): 41-47. [11] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J]. 电工技术学报, 2017, 32(21): 103-111. [12] 王丽婕, 冬雷, 高爽. 基于多位置NWP与主成分分析的风电功率短期预测[J]. 电工技术学报, 2015, 30(5): 79-84. [13] 张倩, 杨耀权. 基于支持向量机核函数的研究[J]. 电力科学与工程, 2012, 28(5): 42-45. [14] HUANG C M, LEE Y J, LIN D K, et al.Model selection for support vector machines via uniform design[J]. Computational Statistics & Data Analysis, 2007, 52(1): 335-346. [15] SAINI L M, AGGARWAL S K, KUMAR A.Parameter optimisation using genetic algorithm for support vector machine-based price-forecasting model in National electricity market[J]. IET Generation Transmission & Distribution, 2010, 4(1): 36. [16] 纪震, 廖惠连, 吴青华. 粒子群算法及应用[M]. 北京: 科学出版社, 2009. [17] 黄洋, 鲁海燕, 许凯波, 等. 一种动态调整惯性权重的简化均值粒子群优化算法[J]. 小型微型计算机系统, 2018, 39(12): 2590-2595. |
|
|
|