|
|
Factor analysis of transformer winding deformation based on magnetic-structure field coupling |
DU Guoan, XU Yuzhen, LAN Sheng, CHEN Jie, LIN Ye |
School of Electrical and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract Under the effect of short-circuit electrodynamic shock, the transformer winding is affected by multiple factors, and the deformation of the winding changes significantly. In this paper, the finite element simulation method of magnetic-structure field coupling is used to establish a three-dimensional model of the transformer. The Ansys Maxwell is used to calculate the short-circuit electrodynamic body density distribution of the winding. The sequential coupling method is used to couple the electrodynamic body density to the structure in Ansys Workbench. Field, the statics analysis of the winding; the relevant theory is used to analyze the influence of temperature, preload and other changes on the deformation of the winding. The results show that both temperature and pre-tightening force can affect the strength of the winding. Temperature has a greater influence on the radial deformation of the winding, and the pre-tightening force has a more significant influence on the axial deformation of the winding. In the area with a large electromagnetic force distribution, the two effects are significantly increased. The research results have certain reference significance for the transformer short circuit design.
|
Received: 30 June 2020
|
|
|
|
Cite this article: |
DU Guoan,XU Yuzhen,LAN Sheng等. Factor analysis of transformer winding deformation based on magnetic-structure field coupling[J]. Electrical Engineering, 2021, 22(1): 1-7.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I1/1
|
[1] 王梦云. 110kV及以上变压器事故统计分析[J]. 供用电, 2006, 23(1): 1-4, 22. [2] 国家质检总局, 国家标准化管理委员会. GB 1094.5—2008. 电力变压器-第五部分: 承受短路的能力[S]. 北京: 中国标准出版社, 2009. [3] IEC 60076.5—2006. Power transformers-part 5: ability to withstand short-circuit[S]. [4] 刘凡, 姚陈果, 陈凌, 等. 基于有限元法电力变压器绕组的短路电动力分析[J]. 电测与仪表, 2016, 53(4): 113-117. [5] AHN H M, LEE J Y, KIM J K, et al.Finite-element analysis of short-circuit electromagnetic force in power transformer[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1267-1272. [6] AHN H M, OH Y H, KIM J K, et al.Experimental verification and finite element analysis of short-circuit electromagnetic force for dry-type transformer[J]. IEEE Transactions on Magnetics, 2012, 48(2): 819-822. [7] 赵志刚, 李光范, 李金忠, 等. 基于有限元法的大型电力变压器抗短路能力分析[J]. 高电压技术, 2014, 40(10): 3214-3220. [8] 王丰华, 杨毅, 何苗忠, 等. 应用有限元法分析变压器绕组固有振动特性[J]. 电机与控制学报, 2018, 22(4): 51-57. [9] 弓杰伟, 马宏忠, 姜宁, 等. 电力变压器的有限元建模与绕组松动分析[J]. 电力自动化设备, 2016, 36(4): 78-84. [10] 郑含博, 翟进乾, 李哲, 等. 大型电力变压器内绕组辐向抗短路能力评估[J]. 电力系统保护与控制, 2016, 44(22): 154-158. [11] 刘军, 张安红. 电力变压器绕组短路动稳定能力的仿真和评估[J]. 变压器, 2012, 49(6): 14-25. [12] 张浩波, 王莉艳. 晶体Cu和Ar弹性模量随压强和温度的变化关系[J]. 西南师范大学学报(自然科学版), 2004, 29(1): 67-70. [13] 罗汉武, 来文青, 姜国义, 等. 不同温度下变压器绕组材料弹性模量及短路轴向力学性能研究[J]. 绝缘材料, 2017, 50(9): 46-51. [14] 曹志军, 胡家炘, 巨建民, 等. 大容量变压器线圈短路状态下非线性稳定性与动力稳定性[J]. 大连铁道学院学报, 2003, 24(2): 31-35. [15] 胡忠平, 廖福旺, 兰生. 变压器绕组辐向稳定性研究[J]. 电气技术, 2017, 18(4): 32-38. [16] 张博, 李岩. 多次冲击条件下的大型变压器绕组辐向失稳[J]. 电工技术学报, 2017, 32(增刊2): 71-76. [17] 杜剑. 基于累积效应电力变压器绕组动稳定性分析研究[D]. 沈阳: 沈阳工业大学, 2018: 12-14. [18] 李洪奎, 李岩. 不同预紧力下变压器绕组轴向振动模态分析[J]. 电机与控制学报, 2010, 14(8): 98-101, 106. |
|
|
|