|
|
Correction of photon number at different detection distances based on ultraviolet imaging detection technology |
TIAN Dikai, LUO Richeng, ZHANG Yufei, XIAO Hongfeng |
School of Electrical and Information Engineering, Changsha University of Science &Technology, Changsha 410114 |
|
|
Abstract As an emerging detection technology, ultraviolet imaging detection technology has gradually been widely used in the inspection of transmission and transformation equipment. In view of the characteristic relationship between the number of photons and the detection distance, even the same corona discharge phenomenon is detected at different detection distances and detected the number of photons is also different. To study the characteristic relationship between the number of photons and the detection distance and correct the number of photons detected at different detection distances to the number of photons at the optimal detection distance, in order to quantify the degree of discharge at different detection distances. Using the advanced discharge model as the experimental object to simulate the external insulation discharge phenomenon of power transmission and transformation equipment, the Super B type ultraviolet imaging detector produced by the Israeli OFIL company was used to study the change characteristics of the photon number with the detection distance under different power frequency voltages. The experimental results show that: as the detection distance increases, the number of photons continues to decrease; the larger the detection distance, the slower the rate of decrease in the number of photons; the characteristic curve of the photon number changing with the detection distance generally shows a power function trend, power exponent between -1.681 and -1.626. On this basis, an appropriate power function model is established according to the experimental data, the correction formula for the photon number detection distance is fitted, and the correction formula is verified. The verification result shows that the correction precision of the correction formula is high and can be practical engineering inspection provides an important reference basis.
|
Received: 20 July 2020
|
|
|
|
Cite this article: |
TIAN Dikai,LUO Richeng,ZHANG Yufei等. Correction of photon number at different detection distances based on ultraviolet imaging detection technology[J]. Electrical Engineering, 2021, 22(2): 30-35.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I2/30
|
[1] 李玉齐, 朱琦文, 张健. 发电厂带电设备红外检测与故障诊断应用研究[J]. 电气技术, 2020, 21(1): 78-82, 85. [2] 朱亚平. 输变电设备带电检测技术研究[J]. 电气技术, 2017, 18(11): 109-113. [3] 陈海. 基于云模型的输变电设备状态预测研究[J]. 电气技术, 2016, 17(8): 38-40, 49. [4] 马立新, 张骏, 浦荣杰. 紫外放电检测量化表征及预测方法研究[J]. 电测与仪表, 2015, 52(1): 106-110. [5] 王胜辉, 冯宏恩, 律方成. 基于日盲紫外成像检测的复合绝缘子电晕放电光子数变化特性[J]. 高电压技术, 2014, 40(8): 2360-2366. [6] 王少华, 梅冰笑, 叶自强, 等. 紫外成像检测技术及其在电气设备电晕放电检测中的应用[J]. 高压电器, 2011, 47(11): 92-97. [7] 肖猛, 文曹. 一种新型绝缘子带电检测方法-紫外成像法[J]. 高电压技术, 2006, 32(6): 42-44. [8] 王锐, 王林军, 彭向阳, 等. 两种紫外成像仪放电检测影响因素研究[J]. 广东电力, 2016, 29(4): 110-114. [9] 蔡新景, 王凯奇, 王新新, 等. 电晕放电紫外成像检测光子数的距离修正[J]. 高电压技术, 2015, 41(1): 7-8. [10] 文华, 周文俊, 唐泽洋, 等. 基于紫外成像技术的110kV输电线路复合绝缘子融冰闪络预警方法及判据[J]. 高电压技术, 2012, 38(10): 2589-2595. [11] 隋晓杰, 宋守信. 高压输电线路电晕放电分析[J]. 电力建设, 2006, 27(3): 37-38. [12] 董小青, 邹明, 吴军, 等. 紫外检测局部放电的光子数与放电量关系研究[J]. 电力科学与技术学报, 2016, 31(4): 155-160. [13] 史俊, 刘兴涛, 刘乐, 等. 基于红外、紫外和可见光融合检测输变电设备缺陷技术[J]. 工业安全与环保, 2019, 45(7): 28-30, 48. [14] 王胜辉, 郭晶, 刘宏亮, 等. 基于紫外成像放电检测光斑面积与观测距离关系研究[J]. 陕西电力, 2013, 41(8): 5-9. [15] 李懿儒, 罗日成, 谭逢焘, 等. 轨道交通供电系统中变压器直流偏磁分析[J]. 上海电机学院学报, 2019, 22(1): 56-62. [16] 王胜辉, 冯宏恩, 律方成. 电晕放电紫外成像检测光子数的距离修正[J]. 高电压技术, 2015, 41(1): 194-201. [17] 王胜辉, 冯宏恩, 律方成. 电晕放电紫外图像参数变化特性及距离修正[J]. 仪器仪表学报, 2014, 35(8): 1823-1830. [18] ESAKKI MUTHU K, SIVANANTHA RAJA A, SHANMUGAPRIYA G.Frequency 16-tupled optical millimeter wave generation usin g dual cascaded MZMs and 2.5Gbps RoF transmission[J]. Optik, 2017, 140: 338-346. |
|
|
|