|
|
Research on improved adaptive particle swarm optimization maximum power point tracking algorithm based on energy-stored quasi-Z-source photovoltaic grid-connected inverter |
ZHU Honghui, QU Aiwen, ZHOU Yangzhong |
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract Traditional particle swarm optimization (PSO) maximum power point tracking (MPPT) algorithm has some disadvantages, such as poor stability, serious oscillation, slow tracking speed and so on when solving the problem of multi-peaks optimization of photovoltaic array under local shadow conditions. Given the advantages of quasi-Z-source inverter, an improved adaptive PSO maximum power point tracking algorithm based on energy-stored quasi-Z-source photovoltaic grid-connected inverter is proposed to solve this problem, in which the energy storage unit is paralleled with the quasi-Z-source impedance network capacitor. This algorithm no longer depends on the number of iterations, but directly updates the inertia weight and learning factor with the individual optimal power and the global optimal power,and the voltage window limitation is inserted. The tracking speed is improved and the power oscillation is reduced effectively. Simulation results show that the proposed algorithm has good global MPPT ability of multi-peaks photovoltaic curve in the application of energy-stored quasi-Z-source photovoltaic grid-connected inverter, improves the generation efficiency of photovoltaic array and has good feasibility.
|
Received: 16 July 2020
|
|
|
|
Cite this article: |
ZHU Honghui,QU Aiwen,ZHOU Yangzhong. Research on improved adaptive particle swarm optimization maximum power point tracking algorithm based on energy-stored quasi-Z-source photovoltaic grid-connected inverter[J]. Electrical Engineering, 2021, 22(3): 6-13.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I3/6
|
[1] 高锋阳, 杜强, 乔垚, 等. 一种新型三相电压型准Z源逆变器[J]. 太阳能学报, 2017, 38(11): 2989-2997. [2] CINTRON-RIVERA J G, YUAN Li, SHUAI Jiang, et al. Quasi-Z-source inverter with energy storage for photovoltaic power generation systems[C]//2011 Twenty- Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2011. [3] RAM J P, BABU T S, RAJASEKAR N.A com- prehensive review on solar PV maximum power point tracking techniques[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 826-847. [4] HAIDAR I, SAAD M, NORAISYAH S, et al.Per- formance evaluation of maximum power point tracking approaches and photovoltaic systems[J]. Energies, 2018, 11(2): 1-24. [5] SUBUDHI B, PRADHAN R.A comparative study on maximum power point tracking techniques for photo- voltaic power systems[J]. IEEE Transactions on Sustainable Energy, 2013, 4(1): 89-98. [6] CRISTIAN H I, BIZON N.Performance of the global MPPT algorithms-a brief overview and case studies[C]// 2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2016: 1-8. [7] 王硕禾, 郑俊观, 陈祖成, 等. 基于改进粒子群优化算法光伏阵列多峰值MPPT的研究[J]. 可再生能源, 2019, 37(6): 879-885. [8] 薛鹏飞, 周海芳, 王明军, 等. 基于FPA的光伏发电全局MPPT算法的研究[J]. 电气技术, 2017, 18(5): 1-5, 11. [9] 王凯丽, 张巧杰. 基于IPSO算法的光伏阵列多峰值MPPT研究[J]. 电气工程学报, 2016, 11(10): 53-58. [10] 娄贺伟, 李光林, 蔡鹏宇, 等. 改进粒子群算法在光伏阵列多峰值MPPT中的应用[J]. 自动化与仪器仪表, 2015(3): 193-195. [11] 袁晓玲, 陈宇. 自适应权重粒子群算法在阴影光伏发电最大功率点跟踪(MPPT)中的应用[J]. 中国电力, 2013, 46(10): 85-90. [12] 祝青, 张兴, 刘淳. 基于电压窗口限制的粒子群MPPT算法的研究[J]. 太阳能学报, 2016, 37(6): 1379-1386. [13] 屈艾文, 陈道炼, 苏倩. 三相准Z源并网逆变器的简单升压改进空间矢量调制策略[J]. 电工技术学报, 2018, 33(4): 826-836. [14] 商立群, 朱伟伟. 基于全局学习自适应细菌觅食算法的光伏系统全局最大功率点跟踪方法[J]. 电工技术学报, 2019, 34(12): 2606-2614. [15] 陈浩, 张代润. 基于恒压/最大功率点跟踪的户用离网型太阳能控制器仿真研究[J]. 电气技术, 2019, 20(9): 14-19. [16] 丁明, 施建雄, 韩平平, 等. 光储系统参与电网调频及调峰的综合控制策略[J]. 中国电力, 2021, 54(1): 116-123, 174. |
|
|
|