|
|
Wavelet de-noising method of all-fiber optical current transformer based on variational mode decomposition |
LIU Mei1,2, NIU Chunping1,2, JI Zhongxiao1,2, DIAO Zhaowei1,2, NIU Lizhuang1,2 |
1. School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049; 2. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 |
|
|
Abstract In order to improve the signal-to-noise ratio of the all-fiber optical current transformer (FOCT) and improve the measurement accuracy, this paper proposes a variational mode decomposition (VMD) method combined with wavelet. The detrended fluctuation analysis (DFA) is used to determine the number of VMD layers to make the decomposition more accurate, and the mutual information method is used to determine the relevant modes, while the uncorrelated modes with a large amount of noise are processed by sym8 wavelet. Signal reconstruction is carried out on this basis to ensure signal characteristics and integrity. The simulated data FOCT data are processed using this method to testify the efficiency compared with conventional VMD, empirical mode decomposition (EMD) and local mean decomposition (LMD), and the root mean square error (RMSE) and signal to noise ratio (SNR) are used as indicators to measure the denoising effect. It is proved that this method can better reduce the noise of the output signal of FOCT through test results.
|
Received: 02 September 2020
|
|
|
|
Cite this article: |
LIU Mei,NIU Chunping,JI Zhongxiao等. Wavelet de-noising method of all-fiber optical current transformer based on variational mode decomposition[J]. Electrical Engineering, 2021, 22(4): 7-11.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I4/7
|
[1] 王来龙, 赵晓辉, 肖浩, 等. 光纤电流传感器温度补偿算法研究[J]. 光电技术应用, 2019, 34(1): 25-30. [2] 唐圣学, 付滔, 张雪辉. 基于小波自适应阈值滤波的VMD降噪方法[J]. 电测与仪表, 2018, 55(9): 10-14. [3] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE Transactions on Signal Pro-cessing, 2014, 62(3): 531-544. [4] 王廷云, 罗承沐, 段联, 等. 光纤电流传感器小波信号处理系统[J]. 清华大学学报(自然科学版), 1999, 39(9): 51-53. [5] 李园园. 光纤电流互感器噪声抑制技术研究[D]. 西安: 中国科学院大学, 2014. [6] 肖涵, 吕勇, 王涛. 齿轮振动信号的去趋势波动分析及其在故障分类中的应用[J]. 振动工程学报, 2015, 28(2): 331-336. [7] 徐帆, 常建华, 刘秉刚, 等. 基于VMD的激光雷达回波信号去噪方法研究[J]. 激光与红外, 2018, 48(11): 1443-1448. [8] LIU Yuanyuan, YANG Gongliu, LI Ming, et al.Variational mode decomposition denoising combined the detrended fluctuation analysis[J]. Signal Pro-cessing, 2016, 125: 349-364. [9] 范雪莉, 冯海泓, 原猛. 基于互信息的主成分分析特征选择算法[J]. 控制与决策, 2013, 28(6): 915-919. [10] 徐晨露, 郝士琦, 王勇, 等. 基于模式互信息的大气湍流畸变波前重构[J]. 空军工程大学学报(自然科学版), 2020, 21(2): 65-70. [11] 钱林, 康敏, 傅秀清, 等. 基于VMD的自适应形态学在轴承故障诊断中的应用[J]. 振动与冲击, 2017, 36(3): 227-233. [12] 邢家维, 金能, 林湘宁, 等. 基于小波包变换的电流互感器饱和识别及有效数据运用策略[J]. 电工技术学报, 2019, 34(6): 1170-1179. [13] 陈勇, 梁洪, 王成栋, 等. 基于改进小波包变换和信号融合的永磁同步电机匝间短路故障检测[J]. 电工技术学报, 2020, 35(增刊1): 228-234. [14] 赵希梅, 原浩, 朱文彬. 基于小波神经网络和非线性扰动观测器的直线伺服系统控制[J]. 电工技术学报, 2019, 34(19): 3989-3996. |
|
|
|