|
|
Operation optimization for regional grid containing energy storage considering auxiliary service |
KONG Yukai1, WEN Buying1, TANG Yuchen2 |
1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108; 2. Economic and Technological Research Institute of State Grid Fujian Electric Power Co., Ltd, Fuzhou 350012 |
|
|
Abstract The current operating mode of energy storage participating in auxiliary services is not perfect, which fails to give full play to the regulating ability of energy storage. To solve this problem, this paper considers that the energy storage power station participates in peak shaving service, frequency modulation service and energy market at the same time. Combined with the intraday forecast curve of the regional power grid and aiming at the lowest operating cost of the regional power grid, this paper constructs the regional power grid optimization model and use YALMIP to call CPLEX for simulation in Matlab. The calculation example shows that under the operation mode proposed in this paper, the capacity utilization rate of the energy storage power station improves, the income of energy storage system increases, and the economic efficiency of regional power grid improves.
|
Received: 09 September 2020
|
|
|
|
Cite this article: |
KONG Yukai,WEN Buying,TANG Yuchen. Operation optimization for regional grid containing energy storage considering auxiliary service[J]. Electrical Engineering, 2021, 22(4): 26-32.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I4/26
|
[1] 颜宁, 潘霄, 张明理, 等. 基于复合储能的多互联微电网日内调度研究[J]. 电工技术学报, 2018, 33(增刊2): 577-585. [2] 胡泽春, 罗浩成. 大规模可再生能源接入背景下自动发电控制研究现状与展望[J]. 电力系统自动化, 2018, 42(8): 1-15. [3] 郭国伟, 刘鹏祥, 徐欣慰, 等. 含可再生能源的配网中储能容量优化配置方法及软件设计[J]. 电气技术, 2020, 21(4): 56-60. [4] 杨建林, 黄一超, 费斐, 等. 不同商业运营模式下储能技术经济效益分析研究[J]. 电气技术, 2018, 19(3): 80-84. [5] 陈浩, 贾燕冰, 郑晋, 等. 规模化储能调频辅助服务市场机制及调度策略研究[J]. 电网技术, 2019, 43(10): 3606-3615. [6] 丁逸行, 徐青山, 吕亚娟, 等. 考虑需量管理的用户侧储能优化配置[J]. 电网技术, 2019, 43(4): 1179-1186. [7] MAHMUD K, MORSALIN S, KAFLE Y R, et al.Improved peak shaving in grid-connected domestic power systems combining photovoltaic generation, battery storage, and V2G-capable electric vehicle[C]//IEEE International Conference on Power System Tech-nology, 2016. [8] 刘国静, 韩学山, 王尚, 等. 基于强化学习方法的风储合作决策[J]. 电网技术, 2016, 40(9): 2729-2736. [9] 伍俊, 鲁宗相, 乔颖, 等. 考虑储能动态充放电效率特性的风储电站运行优化[J]. 电力系统自动化, 2018, 42(11): 41-47, 101. [10] KHAZALI A, KALANTAR M.Optimal dispatch of responsive loads and generic energy storage units in a co-optimized energy and reserve market for smart power systems[J]. Electric Machines & Power Systems, 2016, 44(20): 2285-2297. [11] KUNC L U, CONSTANTINESCU E M.Flexible operation of batteries in power system scheduling with renewable energy[J]. IEEE Transactions on Sustainable Energy, 2016, 7(2): 685-696. [12] 姜欣, 郑雪媛, 胡国宝, 等. 市场机制下面向电网的储能系统优化配置[J]. 电工技术学报, 2019, 34(21): 4601-4610. [13] WANG Zhongwei, ZHONG Jin.Procuring and pricing performance-based frequency regulation services in the electricity market[J]. IET Generation Transmission & Distribution, 2017, 11(10): 2633-2642. [14] 胡泽春, 夏睿, 吴林林, 等. 考虑储能参与调频的风储联合运行优化策略[J]. 电网技术, 2016, 40(8): 2251-2257. [15] TU A N, BYRNE R H, CONCEPCION R J, et al.Maximizing revenue from electrical energy storage in MISO energy & frequency regulation markets[C]//IEEE Power and Energy Society General Meeting, 2016. [16] YUAN Bo, ZHOU Ming, ZHANG Xiaoping, et al.A joint smart generation scheduling approach for wind thermal pumped storage systems[J]. Electric Machines & Power Systems, 2014, 42(3/4): 372-385. [17] PARVANIA M, FOTUHI-FIRUZABAD M, SHAHIDEHPOUR M.Comparative hourly scheduling of centralized and distributed storage in day-ahead markets[J]. IEEE Transactions on Sustainable Energy, 2014, 5(3): 729-737. [18] 葛晓琳, 金言, 夏澍, 等. 面向调峰调频需求的风水火电协调优化调度[J]. 电网技术, 2019, 43(11): 3917-3925. [19] 黄弦超. 计及可控负荷的独立微网分布式电源容量优化[J]. 中国电机工程学报, 2018, 38(7): 1962-1970. |
|
|
|