|
|
Strength analysis of high-speed permanent magnet motor rotor based on thermo-solid coupling |
LIU Zhuang, HAN Xueyan, GAO jun |
National Engineering Research Center for REPM Machine, Shenyang University of Technology,Shenyang 110870 |
|
|
Abstract When the high-speed surface-mount permanent magnet motor is running at high speed, the rotor is subject to large impact and high temperature. In order to ensure the operating strength of the high-temperature high-speed rotor, it is necessary to check the strength of the rotor considering the temperature field. Based on the 3D temperature field, the thermal-solid coupling method is used to analyze the rotor strength of the high-speed permanent magnet motor, and the stress distribution changes under the cold state and operating temperature are compared. It is concluded that the high-speed permanent magnet motor must consider the influence of temperature rise on the rotor strength. At the same time, further considering the influence of interference, sleeve thickness, and segmentation on the thermal strength of the rotor, it is concluded that the permanent magnet motor meets the size of the rotor components under high-speed and high-temperature conditions, which provides a reliable basis for the design of this type of high-speed permanent magnet motor.
|
Received: 28 September 2020
|
|
|
|
Cite this article: |
LIU Zhuang,HAN Xueyan,GAO jun. Strength analysis of high-speed permanent magnet motor rotor based on thermo-solid coupling[J]. Electrical Engineering, 2021, 22(5): 1-5.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I5/1
|
[1] 王凤翔. 高速电机的设计特点及相关技术研究[J]. 沈阳工业大学学报, 2006, 28(3): 258-264. [2] GIERAS J F.Design of permanent magnet brushless motors for high speed application[C]//17th Inter- national Conference on Electrical Machines and Systems, 2014: 1-16. [3] MOGHADDAM R R.High speed operation of elec- trical machines, a review on technology, benefits and challenges[C]//IEEE Energy Conversion Congress and Exposition(ECCE), Pittsburgh, PA, 2014: 5539-5546. [4] BIANCHI N, BOLOGNANI S, LUISE F.Potentials and limits of high-speed PM motors[J]. IEEE Transa- ctions on Industry Applications, 2004, 40(6): 1570-1578. [5] 张凤阁, 杜光辉, 王天煜, 等. 高速电机发展与设计综述[J]. 电工技术学报, 2016, 31(7): 1-18. [6] 王继强, 王凤翔, 鲍文博, 等. 高速永磁电机转子设计与强度分析[J]. 中国电机工程学报, 2005, 25(15): 140-145. [7] 张宸菥, 陈立芳, 王维民, 等. 高速电动机损耗分析及温度场计算[J]. 电气技术, 2017, 18(5): 44-50. [8] 程文杰, 耿海鹏, 冯圣, 等. 高速永磁同步电机转子强度分析[J]. 中国电机工程学报, 2012, 32(27): 87-94. [9] 王保俊, 毕刘新, 陈亮亮, 等. 碳纤维绑扎表贴式高速永磁电机转子强度分析[J]. 浙江大学学报(工学版), 2013, 47(12): 2101-2110. [10] 王天煜, 温福强, 张凤阁, 等. 兆瓦级高速永磁电机转子多场耦合强度分析[J]. 电工技术学报, 2018, 33(19): 4508-4516. [11] 张超, 朱建国, 韩雪岩. 高速表贴式永磁电机转子强度分析[J]. 中国电机工程学报, 2016, 36(17): 4719-4727. [12] D XU X W, G. Optimization design of the sleeve for high speed permanent magnet machine[C]//IEEE 11th Conference on Industrial Electronics and Applications, 2016: 2531-2535. [13] 陈亮亮, 祝长生, 王萌. 碳纤维护套高速永磁电机热态转子强度[J]. 浙江大学学报: 工学版, 2015, 49(1): 162-172. [14] 祝天利, 韩雪岩, 朱龙飞. 基于场路耦合的机器人永磁电动机损耗及其温升分析[J]. 电气技术, 2020, 21(6): 7-12, 55. |
|
|
|