|
|
Decision level data fusion and parallelization of power distribution cloud latform |
WANG Ke, ZHAO Ruifeng, LI Bo, LI Shiming |
Electric Power Dispatching and Control Center of Guangdong Power Grid Co., Ltd, Guangzhou 510600 |
|
|
Abstract With the continuous development of sensor technology, the number of sensors included in the power distribution master station is increasing. The power distribution cloud platform can receive massive amounts of data. In order to improve the utilization rate of data and speed up data processing in the cloud platform, this paper proposes a decision-level data fusion method on the distribution cloud platform and its parallelization scheme. By calculating the influence of the sensors, it is possible to determine the degree that each sensor in the sensor network reflects a certain item, thereby deciding whether to transmit the data to the application layer in real time. At the same time, the improved weight-based D-S theory is used for further data fusion at the application layer, and the entire process uses Spark for parallel computing. On the premise of ensuring the integrity of data transmission, the data transmission and fusion method proposed in this paper can greatly improve the decision-making efficiency of the application layer. Especially for events that require real-time judgment, this method can enable the distribution cloud platform to make decisions in real time and efficiently.
|
Received: 09 October 2020
|
|
|
|
Cite this article: |
WANG Ke,ZHAO Ruifeng,LI Bo等. Decision level data fusion and parallelization of power distribution cloud latform[J]. Electrical Engineering, 2021, 22(7): 89-94.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I7/89
|
[1] 李勋, 周伟. 依托关联规则挖掘的电力生产安全事故致因攫取[J]. 电气技术, 2020, 21(2): 86-90, 118. [2] 耿贞伟, 苏文伟. 对微服务架构的电力云服务平台研究[J]. 微型电脑应用, 2019, 35(2): 80-82. [3] 汪东平. 基于无线传感网的智能电网故障监控系统设计与实现[J]. 自动化与仪器仪表, 2019(5): 63-67. [4] 陈汝斯, 林涛, 毕如玉, 等. 基于有限量测数据的主动配电网电压暂降源精确定位策略[J]. 电工技术学报, 2019, 34(增刊1): 312-320. [5] 叶永市, 林瑞全, 龚林发. 基于多传感器的电缆绝缘监测[J]. 电气技术, 2020, 21(3): 91-96. [6] 王晨宇, 汪定, 王菲菲, 等. 面向多网关的无线传感器网络多因素认证协议[J]. 计算机学报, 2020, 43(4): 683-700. [7] 吴戈, 纪鹏菲, 张铮, 等. 基于异步调度的低延时无线传感器网络MAC协议[J]. 传感器与微系统, 2019, 38(6): 19-22. [8] ZHAO Mingbo, TIAN Zhaoyang, CHOW T W S. Fault diagnosis on wireless sensor network using the neighborhood kernel density estimation[J]. Neural Computing and Applications, 2019, 31(8): 4019-4030. [9] 李昌超, 康忠健, 于洪国, 等. 考虑电力业务重要性的电力通信网关键节点识别[J]. 电工技术学报, 2019, 34(11): 2384-2394. [10] WANG Yu, GUO Jinli, LIU Han, et al.A new evaluation method of node importance in directed weighted complex networks[J]. Journal of Systems Science and Information, 2017, 5(4): 367-375. [11] ZHANG Yao, PRAKASH B A.Data-aware vaccine allocation over large networks[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2015, 10(2): 1-32. [12] 袁晓光, 杨万海, 史林. 动态大规模无线传感器网络决策融合[J]. 电子与信息学报, 2010, 32(12): 2976-2980. [13] 翟社平, 郭琳, 高山, 等. 一种采用贝叶斯推理的知识图谱补全方法[J]. 小型微型计算机系统, 2018, 39(5): 995-999. [14] 章思青, 陶洋, 代建建, 等. 基于模糊逻辑的多跳WSNs分簇算法[J]. 传感技术学报, 2018, 31(7): 1085-1090. [15] 李捷, 杨雪洲, 周亮. 基于改进DS理论多周期数据融合的目标识别方法[J]. 火力与指挥控制, 2019, 44(7): 43-48. [16] KOZIK R.Distributing extreme learning machines with apache spark for net flow-based malware activity detection[J]. Pattern Recognition Letters, 2018, 101: 14-20. [17] 肖文, 胡娟, 周晓峰. 基于MapReduce计算模型的并行关联规则挖掘算法研究综述[J]. 计算机应用研究, 2018, 35(1): 13-23. [18] 陈杰. 基于DS证据理论的决策融合算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. [19] 张鼎衢, 林国营, 宋强, 等. 基于灰色理论及模糊层次分析法的电能计量装置状态评估[J]. 电测与仪表, 2019, 56(11): 134-139, 152. [20] 时生乐, 赵宇海, 李源, 等. 一种有效的基于GraphX的分布式结构化图聚类算法[J]. 计算机科学与探索, 2017, 12(10): 1571-1582. |
|
|
|