|
|
Research on applicability of graphite-based flexible grounding device in transmission line |
ZHANG Guofeng1, HUI Kang2, WU Kongyong1, GUO Jie2 |
1. He'nan Star Electric Power Equipment Co., Ltd, Xuchang, He'nan 461503; 2. Xi'an Jiaotong University, Xi'an 710049 |
|
|
Abstract Graphite based flexible grounding materials are used in transmission line tower grounding body because of their stable chemical properties, excellent corrosion resistance and good compatibility with soil. However, their adaptability must be determined according to the transmission energy, tower position and operation environment of transmission line. In this paper, the finite element simulation models of different transmission line tower grounding devices are established, and the corresponding grounding resistance is calculated. According to the value of grounding resistance, using ATP-EMTP software, the current flowing through the grounding device under grounding short circuit and lightning impulse current and temperature rise are calculated. The applicability of graphite based flexible grounding device in transmission line is studied from two aspects of grounding resistance, temperature rise under power frequency short circuit current and lightning impulse current. The research results show that the power frequency grounding resistance required by the regulations meets the requirements of transmission line tower grounding resistance, but in case of single-phase grounding short-circuit fault of UHV transmission line, the failure of protection will make the temperature rise of grounding device exceed the limit value.
|
Received: 13 March 2021
|
|
|
|
Cite this article: |
ZHANG Guofeng,HUI Kang,WU Kongyong等. Research on applicability of graphite-based flexible grounding device in transmission line[J]. Electrical Engineering, 2021, 22(10): 93-97.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I10/93
|
[1] 王春杰, 祝令瑜, 汲胜昌, 等. 高压输电线路和变电站雷电防护的现状与发展[J]. 电瓷避雷器, 2010(3): 35-46. [2] 胡元潮, 李光杰, 安韵竹, 等. 基于平面复合降阻材料的杆塔基础接地降阻研究[J]. 水电能源科学, 2020, 38(2): 176-180. [3] 程育林, 方鹏, 江雷, 等. 垂直接地极对输电线路杆塔接地电阻的影响效果[J]. 湖南电力, 2020, 40(1): 6-10, 19. [4] 李光杰, 胡元潮, 李勋, 等. 基于柔性石墨接地体的塔基外敷降阻研究[J]. 智慧电力, 2020, 48(8): 116-122. [5] 李文琦, 胡元潮, 赵文龙, 等. 扩径石墨复合接地材料的接地体散流特性研究[J]. 电瓷避雷器, 2020(4): 68-74, 79. [6] 李凤和. 论金属和非金属材料柔性接地的实际应用[J]. 中国金属通报, 2019(8): 188-189. [7] 孙长海, 尚京城, 吴键, 等. 新型长寿命复合接地系统研究及应用[J]. 电瓷避雷器, 2019(4): 80-86. [8] 曾挺, 吴哲, 孔祥美, 等. 柔性石墨缆在山区线路杆塔接地中的应用[J]. 电气技术, 2020, 21(3): 130-132, 136. [9] 肖微, 胡元潮, 阮江军, 等. 柔性石墨复合接地材料及其接地特性[J]. 电工技术学报, 2017, 32(2): 85-94. [10] 交流电气装置的过电压保护和绝缘配合设计规范: GB/T 50064—2014[S] GB/T 50064—2014[S]. 北京: 中国计划出版社, 2014. [11] 商志伟. 杆塔接地装置散流分布与冲击接地电阻规律的试验研究与仿真分析[D]. 武汉: 华中科技大学, 2016. [12] 黄欢, 郭洁, 魏琪, 等. 杆塔冲击接地阻抗的有限元分析[J]. 高压电器, 2019, 55(4): 217-222. [13] 郭轶磊, 赵自威, 张康伟. 高土壤电阻率下的新型石墨接地材料冲击特性仿真分析[J]. 电力学报, 2019, 34(1): 1-6. [14] 肖微, 黄道春, 阮江军, 等. 石墨基柔性接地体与金属接地体冲击接地性能对比[J]. 高电压技术, 2018, 44(12): 3808-3813. |
|
|
|