|
|
Defect detection method for composite insulator based on infrared image segmentation and SSA-SVM algorithm |
DONG Yifei1, SHU Shengwen1, CHEN Cheng1, JIN Ming2, WANG Jian2 |
1. School of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108; 2. Electric Power Research Institute, State Grid Xinjiang Electric Power Co., Ltd, Urumqi 830013 |
|
|
Abstract In order to identify the defect types of AC/DC composite insulator accurately and quickly, a defect detection method for AC/DC composite insulators based on infrared image segmentation and support vector machine (SVM) optimized by sparrow search algorithm (SSA) is proposed. Firstly, short samples of composite insulators are made, and four different types of simulated defects are set. By applying AC and DC voltage respectively, the infrared image samples of normal and defective composite insulators are measured by infrared thermal imager. Then, the insulator region is obtained by a threshold segmentation method based on the maximum variance between classes, and the infrared feature parameters is calculated and selected by the Fisher criterion. Finally, the SVM model optimized by SSA is used to identify the insulator defect types. The results show that the method has a recognition accuracy of more than 87% for the defect types of AC/DC composite insulators in the laboratory and good recognition effect for AC composite insulators in primary field application.
|
Received: 07 June 2021
|
|
|
|
Cite this article: |
DONG Yifei,SHU Shengwen,CHEN Cheng等. Defect detection method for composite insulator based on infrared image segmentation and SSA-SVM algorithm[J]. Electrical Engineering, 2021, 22(11): 73-79.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I11/73
|
[1] 刘泽洪. 复合绝缘子使用现状及其在特高压输电线路中的应用前景[J]. 电网技术, 2006, 30(12): 1-7. [2] 程养春, 李成榕, 沈小军, 等. 几种合成绝缘子带电检测方法的比较[J]. 高电压技术, 2004, 30(6): 35-37. [3] 李玉齐, 朱琦文, 张健. 发电厂带电设备红外检测与故障诊断应用研究[J]. 电气技术, 2020, 21(1): 78-82, 85. [4] 陈原, 刘燕生, 沈健, 等. 复合绝缘子隐蔽性缺陷检测方法[J]. 电网技术, 2006, 30(12): 58-63. [5] 何洪英, 杨迎建, 姚建刚, 等. 利用红外热像检测高压绝缘子污秽度的影响因素研究[J]. 高电压技术, 2010, 36(7): 1730-1736. [6] 黄振, 张中浩, 彭向阳, 等. 复合绝缘子表面异常发热现象分析及其抑制措施[J]. 电瓷避雷器, 2020(6): 171-175, 186. [7] 金立军, 曹培, 胡娟. 可见光图像颜色特征与支持向量机相结合的绝缘子污秽状态识别方法[J]. 高压电器, 2015, 51(2): 1-7, 17. [8] 黄新波, 张慧莹, 张烨, 等. 基于改进色差法的复合绝缘子图像分割技术[J]. 高电压技术, 2018, 44(8): 2493-2500. [9] 廖志伟, 臧晓春, 周可慧, 等. 基于红外图像特征与BP神经网络的绝缘子串低零值故障和污秽故障识别方法[J]. 电瓷避雷器, 2019(3): 204-211. [10] 律方成, 刘杰, 石鹏, 等. 复合绝缘子故障检测方法的有效性分析[J]. 高压电器, 2013, 49(5): 95-100. [11] 朱晨呈, 徐永能. 基于图像处理技术的转辙机智能检测研究[J]. 电气技术, 2019, 20(增刊1): 53-56. [12] 带电设备红外诊断应用规范: DL/T664—2016[S]. 北京: 中国电力出版社, 2017. [13] 金立军, 张达, 段绍辉, 等. 基于红外与紫外图像信息融合的绝缘子污秽状态识别[J]. 电工技术学报, 2014, 29(8): 309-318. [14] 李贵阳, 张福明, 王永岗. 基于SVM模型的山区高速公路多车事故影响因素分析[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(6): 1046-1051. [15] 范贤浩, 刘捷丰, 张镱议, 等. 融合频域介电谱及支持向量机的变压器油浸纸绝缘老化状态评估[J]. 电工技术学报, 2021, 36(10): 2161-2168. [16] 薛建凯. 一种新型的群智能优化技术的研究与应用[D]. 上海: 东华大学, 2020. |
|
|
|