|
|
Repair of missing load data in distribution network based on DBSCAN secondary clustering |
CAI Wenbin, CHENG Xiaolei, WANG Peng, WANG Yuan |
Inner Mongolia Electric Power Institute of Economics and Technology, Hohhot 010090 |
|
|
Abstract Distribution power load belongs to data with time series characteristics. According to the inherent regularity and fluctuation characteristics of the data, repairing the missing load data due to various factors can lay a foundation for the validity and predictability of the power system research and experimental results. Firstly, this paper proposes density-based spatial clustering of applications with noise (DBSCAN) secondary clustering method. Secondly, the load attribute similarity for distribution network load data is proposed, and the load record comprehensive similarity is further proposed. Thirdly, according to the load category results of DBSCAN secondary clustering method and the comprehensive similarity of the obtained load records, the data category with the largest similarity is matched, and the missing data is repaired. At last, the validity and correctness of the proposed method are proved by a numerical example.
|
Received: 15 June 2021
|
|
|
|
Cite this article: |
CAI Wenbin,CHENG Xiaolei,WANG Peng等. Repair of missing load data in distribution network based on DBSCAN secondary clustering[J]. Electrical Engineering, 2021, 22(12): 27-33.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I12/27
|
[1] 熊中敏, 郭怀宇, 吴月欣. 缺失数据处理方法研究综述[J]. 计算机工程与应用, 2021(5): 1-13. [2] 武佳卉, 邵振国, 杨少华, 等. 数据清洗在新能源功率预测中的研究综述和展望[J]. 电气技术, 2020, 21(11): 1-6. [3] 王方雨, 刘文颖, 陈鑫鑫, 等. 基于“秩和”近似相等特性的同期线损异常数据辨识方法[J]. 电工技术学报, 2020, 35(11): 4771-4783. [4] 王子馨, 胡俊杰, 刘宝柱. 基于长短期记忆网络的电力系统量测缺失数据恢复方法[J]. 电力建设, 2021, 42(5): 1-8. [5] LITTLE R J A, RUBIN D B. Statistical analysis with missing data[M]. New York: John Wiley & Sons, 2019. [6] 杨亚洲, 钱秋明, 梁鸭红. 基于k-means聚类方法的曲线按比伸缩置换缺失数据补全法[J]. 电气自动化, 2021, 43(2): 50-52. [7] 胡金磊, 赖俊驹, 黎阳羊, 等. 基于自适应DBSCAN算法的开关柜绝缘状态评价方法[J]. 电工技术学报, 2021, 36(增刊1): 344-352. [8] 杜沛, 程晓荣. 一种基于K近邻的比较密度峰值聚类算法[J]. 计算机工程与应用, 2019, 55(10): 161-168. [9] 陈曦, 骆高超, 曹杰, 等. 基于改进K-近邻算法的XLPE电缆气隙放电发展阶段识别[J]. 电工技术学报, 2020, 35(12): 5015-5024. [10] 赵天辉, 王建学, 马龙涛, 等. 基于非参数回归分析的工业负荷异常值识别与修正方法[J]. 电力系统自动化, 2017, 41(18): 53-59. [11] 林顺富, 谢潮, 李东东, 等. 基于灰色关联与模糊聚类分析的负荷预处理方法[J]. 电测与仪表, 2017, 54(11): 36-42. [12] 翁秉钧, 杨耿杰, 高伟, 等. 一种基于改进K均值聚类的输电线路覆冰状态侦测方法[J]. 电气技术, 2021, 22(5): 43-49. [13] 谢桦, 任超宇, 郭志星, 等. 基于聚类抽样的随机潮流计算[J]. 电工技术学报, 2020, 35(23): 4940-4948. [14] 刘如辉, 黄炜平, 王凯, 等. 半监督约束集成的快速密度峰值聚类算法[J]. 浙江大学学报(工学版), 2018, 52(11): 2191-2200. [15] 谢国伟, 钱雪忠, 周世兵. 基于非参数核密度估计的密度峰值聚类算法[J]. 计算机应用研究, 2018, 35(10): 82-85. |
|
|
|