|
|
Research on deformation of transformer low-voltage winding under short-circuit electromagnetic force |
LIN Ye, LAN Sheng, XU Minglong, CHEN Jie, ZHU Zhihao |
School of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract There is a huge short-circuit electromagnetic force in short-circuited condition for power transformer. When short-circuit electromagnetic force is too large, it will cause the transformer winding deformation. In this paper, a 50MV·A three-phase three-winding transformer is taken as an example. The short circuit current in three-phase symmetrical short-circuited condition for transformer is calculated and took as an excitation in finite element analysis. Then the short-circuit electromotive force of winding is calculated by finite element software. The magnetic-structure coupling method is used to calculate the winding deformation and stress distribution under the maximum short-circuit electromagnetic force. The results show that the low-voltage winding is subjected to the radial electromagnetic force compressed inward and the axial electromagnetic force compressed toward the middle during short-circuit. The short-circuit electromagnetic force that acts on the middle part of the winding is greater than the two ends, which causes the deformation of the middle part of the winding to be greater than the two ends. The research results have certain practical significance for related researches such as transformer winding deformation.
|
Received: 09 August 2021
|
|
|
|
Cite this article: |
LIN Ye,LAN Sheng,XU Minglong等. Research on deformation of transformer low-voltage winding under short-circuit electromagnetic force[J]. Electrical Engineering, 2022, 23(1): 8-14.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I1/8
|
[1] 潘超, 米俭, 王格万, 等. 基于场路耦合的变压器绕组匝间短路电磁谐响应分析方法[J]. 电工技术学报, 2019, 34(4): 673-682. [2] 张云, 李少逸, 黄晓波. 一起220kV变压器突发短路故障分析[J]. 电气技术, 2018, 19(5): 94-98. [3] AHN H M, OH Y H, KIM J K, et al.Experimental verification and finite element analysis of short-circuit electromagnetic force for dry-type transformer[J]. IEEE Transactions on Magnetics, 2012, 48(2): 819-822. [4] EBRAHIMI B M, FEREIDUNIAN A, SAFFARI S, et al.Analytical estimation of short circuit axial and radial forces on power transformers windings[J]. IET Generation, Transmission & Distribution, 2014, 8(2): 250-260. [5] BAKSHI A, KULKARNI S V.Coupled electromagnetic- wtructural analysis of the spiraling phenomenon in a helical winding of a power transformer[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 235-240. [6] ZHAO Yi, WEN Tao, JIN Mingkai, et al.Distribution characteristics of three-dimensional leakage magnetic field at the transposition structure of transformer winding[C]//2020 IEEE Electrical Insulation Conference (EIC), Knoxville, TN, USA, 2020: 387-391. [7] GEISSLER D, LEIBFRIED T.Short-circuit strength of power transformer windings-verification of tests by a finite element analysis-based model[J]. IEEE Transa- ctions on Power Delivery, 2017, 32(4): 1705-1712. [8] ZHANG Bo, YAN Ning, MA Shaohua, et al.Buckling strength analysis of transformer windings based on electromagnetic thermal structural coupling method[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-4. [9] 徐肖伟, 钱国超, 邹德旭, 等. 不同模型下变压器绕组漏磁场及短路力的比对研究[J]. 高压电器, 2016, 52(5): 85-89, 95. [10] 徐永明, 郭蓉, 张洪达. 电力变压器绕组短路电动力计算[J]. 电机与控制学报, 2014, 18(5): 36-42. [11] 熊汉武, 张书琦, 赵志刚, 等. 电力变压器绕组幅向弯曲应力分析方法[J]. 高电压技术, 2020, 46(3): 931-938. [12] 胡忠平, 廖福旺, 兰生. 变压器绕组辐向稳定性研究[J]. 电气技术, 2017, 18(4): 32-38. [13] 张博, 李岩. 多次冲击条件下的大型变压器绕组辐向失稳[J]. 电工技术学报, 2017, 32(增刊2): 71-76. [14] 张海军, 张华, 马强, 等. 基于有限元的电力变压器绕组弹塑性变形分析[J]. 高压电器, 2019, 55(6): 170-176. [15] 王楠, 刘宝成, 臧春艳, 等. 基于磁—结构耦合场的变压器绕组形变分析[J]. 高压电器, 2016, 52(1): 94-100. [16] 杜国安, 徐玉珍, 兰生, 等. 基于磁-结构场耦合的变压器绕组变形的因素分析[J]. 电气技术, 2021, 22(1): 1-7, 46. [17] 郑含博, 翟进乾, 李哲, 等. 大型电力变压器内绕组辐向抗短路能力评估[J]. 电力系统保护与控制, 2016, 44(22): 154-158. |
|
|
|