|
|
A photovoltaic system fault identification method based on convolutional neural network and long short-term memory network |
TU Yanzhao, GAO Wei, YANG Gengjie |
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract As the installed capacity of photovoltaic power generation continues to rise, how to detect and solve the faults and abnormalities of the photovoltaic modules in time to reduce energy loss and improve the power generation efficiency of photovoltaic systems has become a significant task. The characteristic differences between the I-V curves of photovoltaic arrays in different fault states are studied in this paper. The I-V curves are directly used as the input for fault diagnosis. On these grounds, a photovoltaic system fault identification method based on convolutional neural network (CNN) and long short-term memory (LSTM) network is proposed in this paper. Experimental results show that this method can not only identify single faults like short circuit, partial shading, abnormal aging and so on, but also effectively identify the simultaneous existence of hybrid faults.
|
Received: 02 September 2021
|
|
|
|
Cite this article: |
TU Yanzhao,GAO Wei,YANG Gengjie. A photovoltaic system fault identification method based on convolutional neural network and long short-term memory network[J]. Electrical Engineering, 2022, 23(2): 48-54.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I2/48
|
[1] HUANG Junming, WAI Rongjong, YANG Gengjie.Design of hybrid artificial bee colony algorithm and semi-supervised extreme learning machine for PV fault diagnoses by considering dust impact[J]. IEEE Transa-ctions on Power Electronics, 2020, 35(7): 7086-7099. [2] 马铭遥, 张志祥, 刘恒, 等. 基于I-V特性分析的晶硅光伏组件故障诊断[J]. 太阳能学报, 2021, 42(6): 130-137. [3] 王尧, 张彦风, 牛峰, 等. 光伏直流电弧电磁辐射特性分析与测量方法[J]. 电工技术学报, 2019, 34(14): 2913-2921. [4] 王先发, 顾卫祥. 光伏系统直流侧故障电弧的检测与判别[J]. 电气技术, 2019, 20(5): 10-13. [5] 邓堡元, 何赟泽, 王洪金, 等. 光伏电池图像序列的深度学习检测方法[J]. 机械工程学报, 2021, 57(8): 98-106. [6] 冯宗海, 蔡广, 曾华锋, 等. 基于Sobel算法的太阳能光伏组件红外图像识别技术研究及应用[J]. 中阿科技论坛(中英文), 2021(7): 94-96. [7] 甘雨涛, 吴振辉, 陈志聪, 等. 基于LoRa和自适应神经网络模糊推理系统的光伏阵列故障诊断系统[J]. 电气技术, 2020, 21(8): 80-86. [8] KUO Chaolin, CHEN Jianliang, CHEN S J, et al.Photovoltaic energy conversion system fault detection using fractional-order color relation classifier in micro-distribution systems[J]. IEEE Transactions on Smart Grid, 2017, 8(3): 1163-1172. [9] 裴刘生, 周双全, 王海峰, 等. PCA-CLUSTER和EMD-CNN相结合的光伏发电设备故障诊断方法[J]. 太阳能, 2021(7): 59-65. [10] 张晓鹏, 张兴忠. 基于高斯核函数的支持向量机光伏故障诊断研究[J]. 可再生能源, 2021, 39(6): 760-765. [11] 何根新, 周俊杰, 周家兴, 等. 基于自适应权重粒子群优化BP神经网络的光伏阵列故障诊断方法研究[J]. 电子设计工程, 2021, 29(9): 75-79. [12] 刘圣洋, 冬雷, 王晓晓, 等. 基于高斯核模糊C均值聚类的光伏阵列故障诊断方法[J]. 太阳能学报, 2021, 42(5): 286-294. [13] CHINE W, MELLIT A, LUGHI V, et al.A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[J]. Renewable Energy, 2016, 90: 501-512. [14] 王召军, 许志猛. 基于低分辨率红外阵列传感器的人体身份和动作识别[J]. 电气技术, 2019, 20(11): 6-10, 26. [15] 李冬辉, 尹海燕, 郑博文, 等. 改进的LSTM方法在冷水机组传感器故障检测中的应用[J]. 电工技术学报, 2019, 34(11): 2324-2332. [16] 王晨, 寇鹏. 基于卷积神经网络和简单循环单元集成模型的风电场内多风机风速预测[J]. 电工技术学报, 2020, 35(13): 2723-2735. |
|
|
|