|
|
Overview of hybrid cooling system for high power density motor |
ZHU Ting1, ZHANG Yuqing1, LI Qiang1, WANG Yu2, GENG Weiwei1 |
1. Nanjing University of Science and Technology,Nanjing 210094; 2. Fudan University,Shanghai 200433 |
|
|
Abstract With the development of motors in the direction of high power density, high overload capacity and high-speed miniaturization, motor losses and temperature rise continue to increase, which seriously affects the operating efficiency, reliability and life of the motor. A single basic cooling system can no longer meet the cooling needs of high power density motors. A hybrid high-efficiency heat dissipation system that integrates multiple heat dissipation technologies is an important technical means to suppress the current temperature rise of the motor and improve the stability of the motor operation. This paper first introduces the advantages, disadvantages and application scope of air-cooled and liquid cooled basic cooling systems, and then points out the limitations of single cooling system and the necessity of using hybrid cooling system. Then the hybrid cooling system is classified according to the principle of reducing thermal resistance. The application effect of different hybrid cooling systems for high power density motor is compared and analyzed, and the design guide of hybrid cooling system for high power density motor is given. Finally, the development trend of hybrid cooling system for high power density motor is predicted and prospected.
|
Received: 10 February 2022
|
|
|
|
Cite this article: |
ZHU Ting,ZHANG Yuqing,LI Qiang等. Overview of hybrid cooling system for high power density motor[J]. Electrical Engineering, 2022, 23(8): 1-16.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I8/1
|
[1] 唐任远. 现代永磁电机: 理论与设计[M]. 北京: 机械工业出版社, 2016. [2] LU S M.A review of high-efficiency motors: specification, policy, and technology[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1-12. [3] 刘向东, 马同凯, 赵静. 定子无铁心轴向磁通永磁同步电机研究进展综述[J]. 中国电机工程学报, 2020, 40(1): 257-273, 392. [4] 曹博宇. 非晶合金轴向磁通永磁同步电机热管理技术[D]. 沈阳: 沈阳工业大学, 2019. [5] 祝天利, 韩雪岩, 朱龙飞. 基于场路耦合的机器人永磁电动机损耗及其温升分析[J]. 电气技术, 2020, 21(6): 7-12, 55. [6] 高俊国, 孟睿潇, 胡海涛, 等. 电机定子绝缘老化寿命预测研究进展[J]. 电工技术学报, 2020, 35(14): 3065-3074. [7] 张宸菥, 陈立芳, 王维民, 等. 高速电动机损耗分析及温度场计算[J]. 电气技术, 2017, 18(5): 44-50. [8] 朱高嘉, 刘晓明, 李龙女, 等. 永磁风力发电机风冷结构设计与分析[J]. 电工技术学报, 2019, 34(5): 946-953. [9] 徐媚媚, 刘国海, 陈前, 等. 永磁辅助同步磁阻电机设计及其关键技术发展综述[J]. 中国电机工程学报, 2019, 39(23): 7033-7043, 7116. [10] 马伟明, 王东, 程思为, 等. 高性能电机系统的共性基础科学问题与技术发展前沿[J]. 中国电机工程学报, 2016, 36(8): 2025-2035. [11] 尹惠. 永磁同步电机损耗计算及温度场分析[D]. 哈尔滨: 哈尔滨工业大学, 2015. [12] 梁培鑫. 永磁同步轮毂电机发热及散热问题的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [13] 张华伟. 非晶合金轴向磁通永磁电机冷却系统设计及热计算[D]. 沈阳: 沈阳工业大学, 2016. [14] 王小飞, 代颖, 罗建. 基于流固耦合的车用永磁同步电机水道设计与温度场分析[J]. 电工技术学报, 2019, 34(增刊1): 22-29. [15] 吴柏禧, 万珍平, 张昆, 等. 考虑温度场和流场的永磁同步电机折返型冷却水道设计[J]. 电工技术学报, 2019, 34(11): 2306-2314. [16] 唐毓, 蒋意珏, 罗维. 大容量短轴型和长轴型高温超导电机的制冷系统设计和电磁特性对比分析[J]. 电气技术, 2019, 20(8): 49-53, 58. [17] 刘壮, 韩雪岩, 高俊. 基于热固耦合的高速永磁电动机转子强度分析[J]. 电气技术, 2021, 22(5): 1-5, 101. [18] 谢颖, 胡圣明, 陈鹏, 等. 永磁同步电机匝间短路故障温度场分析[J]. 电工技术学报, 2022, 37(2): 322-331. [19] 李海. 水冷式电机冷却系统故障分析及处理措施[J]. 电工技术, 2019(16): 121-122. [20] 汤勇, 孙亚隆, 郭志军, 等. 电机散热系统的研究现状与发展趋势[J]. 中国机械工程, 2021, 32(10): 1135-1150. [21] GHAHFAROKHI P S, PODGORNOVS A, KALLASTE A, et al.Opportunities and challenges of utilizing additive manufacturing approaches in thermal mana- gement of electrical machines[J]. IEEE Access, 2021, 9: 36368-36381. [22] SIXEL W, LIU Mingda, NELLIS G, et al.Cooling of windings in electric machines via 3-D printed heat exchanger[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 4718-4726. [23] SIXEL W, LIU Mingda, NELLIS G, et al.Ceramic 3D printed direct winding heat exchangers for improving electric machine thermal management[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019: 769-776. [24] SIXEL W, LIU Mingda, NELLIS G, et al.Cooling of windings in electric machines via 3D printed heat exchanger[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018: 229-235. [25] POPESCU M, STATON D A, BOGLIETTI A, et al.Modern heat extraction systems for power traction machines-a review[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2167-2175. [26] 林明耀, 乐伟, 林克曼, 等. 轴向永磁电机热设计及其研究发展综述[J]. 中国电机工程学报, 2021, 41(6): 1914-1928. [27] 陈世坤. 电机设计[M]. 2版. 北京: 机械工业出版社, 2004. [28] 江嘉铭, 姚列英, 李青, 等. HL-2M RMP线圈高速电机定子的散热研究[J]. 电气技术, 2016, 17(5): 72-75. [29] 丁树业, 葛云中, 徐殿国, 等. 1.5MW双馈风力发电机内流体场分析[J]. 中国电机工程学报, 2012, 32(21): 93-98. [30] 丁树业, 孙兆琼, 徐殿国, 等. 3MW双馈风力发电机传热特性数值研究[J]. 中国电机工程学报, 2012, 32(3): 137-143. [31] MIZUNO S, NODA S, MATSUSHITA M, et al.Development of a totally enclosed fan-cooled traction motor[J]. IEEE Transactions on Industry Applications, 2013, 49(4): 1508-1514. [32] 陈轶, 卢琴芬, 沈燚明. 双边水冷永磁直线电机的磁热耦合分析(英文)[J]. 中国电机工程学报, 2019, 39(7): 1852-1862. [33] 殷巧玉, 李伟力, 张晓晨. 高速永磁发电机冷却流道结构双维度连续量子蚁群优化的温度场计算[J]. 中国电机工程学报, 2011, 31(36): 77-85. [34] 李翠萍, 管正伟, 丁秀翠, 等. 电动汽车用电机冷却系统设计及发展综述[J]. 微特电机, 2019, 47(1): 82-86. [35] SATRUSTEGUI DE LEGARRA M. Thermal and hydraulic design of water based cooling systems for electrical machines[D]. Spain: Universidad de Navarra, 2017. [36] LINDH P, PETROV I, JAATINEN-VÄRRI A, et al. Direct liquid cooling method verified with an axial- flux permanent-magnet traction machine prototype[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6086-6095. [37] 邢军强, 汪明武, 孔莹莹. 基于流固耦合的永磁直驱风力发电机传热分析[J]. 电气技术, 2021, 22(1): 47-52. [38] DAVIN T, PELLE J, HARMAND S, et al.Experi- mental study of oil cooling systems for electric motors[J]. Applied Thermal Engineering, 2015, 75: 1-13. [39] 顾国彪, 阮琳, 刘斐辉, 等. 蒸发冷却技术的发展、应用和展望[J]. 电工技术学报, 2015, 30(11): 1-6. [40] 石华林, 熊斌, 刘作坤, 等. 高压变频器功率模块相变散热研究[J]. 电工电能新技术, 2021, 40(6): 73-80. [41] 石华林, 熊斌, 冯韵, 等. 配电变压器表贴式相变辅助散热温度计算方法[J]. 中国电机工程学报, 2021, DOI: 10.13334/j.0258-8013.pcsee.210478. [42] 张凤阁, 杜光辉, 王天煜, 等. 兆瓦级高速永磁电机通风系统设计与转子表面风摩耗研究[J]. 电机与控制学报, 2014, 18(2): 50-55. [43] 张凤阁, 杜光辉, 王天煜, 等. 1.12MW高速永磁电机多物理场综合设计[J]. 电工技术学报, 2015, 30(12): 171-180. [44] 张凤阁, 杜光辉, 王天煜, 等. 1.12MW高速永磁电机不同冷却方案的温度场分析[J]. 电工技术学报, 2014, 29(增刊1): 66-72. [45] ZHANG Zhuoran, WANG Yu, SANG Yu, et al.Efficiency improvement and thermal analysis of a totally enclosed self-cooling doubly salient generator with optimized stator yoke[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-5. [46] BOGLIETTI A, CAVAGNINO A, STATON D, et al.Evolution and modern approaches for thermal analysis of electrical machines[J]. IEEE Transactions on Indu- strial Electronics, 2009, 56(3): 871-882. [47] 吴胜男, 郝大全, 佟文明, 等. 基于集中参数热模型的大功率模块化定子混合励磁同步电机热分析[J]. 中国电机工程学报, 2020, 40(24): 7851-7859. [48] SCIASCERA C, GIANGRANDE P, PAPINI L, et al.Analytical thermal model for fast stator winding temperature prediction[J]. IEEE Transactions on Indu- strial Electronics, 2017, 64(8): 6116-6126. [49] CRESCIMBINI F, DI NAPOLI A, SOLERO L, et al.Compact permanent-magnet generator for hybrid vehicle applications[J]. IEEE Transactions on Industry Applications, 2005, 41(5): 1168-1177. [50] RAHMAN K M, PATEL N R, WARD T G, et al.Application of direct-drive wheel motor for fuel cell electric and hybrid electric vehicle propulsion system[J]. IEEE Transactions on Industry Applications, 2006, 42(5): 1185-1192. [51] SUN Yalong, ZHANG Shiwei, YUAN Wei, et al.Applicability study of the potting material based thermal management strategy for permanent magnet synchronous motors[J]. Applied Thermal Engineering, 2019, 149: 1370-1378. [52] NATEGH S, BARBER D, LINDBERG D, et al.Review and trends in traction motor design: primary and secondary insulation systems[C]//2018 XIII Inter- national Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 2018: 2607-2612. [53] KAZEROONI K, RAHIDEH A, AGHAEI J.Experi- mental optimal design of slotless brushless PM machines based on 2-D analytical model[J]. IEEE Transactions on Magnetics, 2016, 52(5): 1-16. [54] KULAN M C, ŞAHIN S, BAKER N J.An overview of modern thermo-conductive materials for heat extraction in electrical machines[J]. IEEE Access, 2020, 8: 212114-212129. [55] IBRAHIM N I, AL-SULAIMAN F A, RAHMAN S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. [56] WROBEL R, MACGLEN R J.Opportunities and challenges of employing heat-pipes in thermal mana- gement of electrical machines[C]//2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 2020: 961-967. [57] BRADFORD M.The application of heat pipes to cooling rotating electrical machines[C]//1989 4th International Conference on Electrical Machines and Drives, London, UK, 1989: 145-149. [58] 佟文明, 程雪斌, 孙静阳, 等. 转子风刺对高速永磁电机永磁体温升的抑制作用[J]. 中国电机工程学报, 2017, 37(5): 1526-1534. [59] KIM C, LEE K S, YOOK S J.Effect of air-gap fans on cooling of windings in a large-capacity, high-speed induction motor[J]. Applied Thermal Engineering, 2016, 100: 658-667. [60] FAWZAL A S, CIRSTEA R M, GYFTAKIS K N, et al.Fan performance analysis for rotor cooling of axial flux permanent magnet machines[J]. IEEE Transa- ctions on Industry Applications, 2017, 53(4): 3295-3304. [61] 孙明灿, 唐任远, 韩雪岩, 等. 高频非晶合金轴向磁通永磁电机不同冷却方案温度场分析[J]. 电机与控制学报, 2018, 22(2): 1-8, 23. [62] ZHANG B, SEIDLER T, DIERKEN R, et al.Deve- lopment of a yokeless and segmented armature axial flux machine[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2062-2071. [63] POLIKARPOVA M, LINDH P, GERADA C, et al.Thermal effects of stator potting in an axial-flux permanent magnet synchronous generator[J]. Applied Thermal Engineering, 2015, 75: 421-429. [64] VANSOMPEL H, SERGEANT P.Extended end- winding cooling insert for high power density electric machines with concentrated windings[J]. IEEE Transa- ctions on Energy Conversion, 2020, 35(2): 948-955. [65] 李涛, 张幽彤, 梁玉秀, 等. 定子无磁轭模块化轴向磁通永磁电机研究进展综述[J]. 中国电机工程学报, 2021, 41(1): 340-353. [66] WINTERBORNE D, STANNARD N, SJOBERG L, et al.An air-cooled YASA motor for in-wheel electric vehicle applications[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6448-6455. [67] WROBEL R, HUSSEIN A.A feasibility study of additively manufactured heat guides for enhanced heat transfer in electrical machines[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 205-215. [68] ZHANG Fengyu, GERADA D, XU Zeyuan, et al.Back-iron extension thermal benefits for electrical machines with concentrated windings[J]. IEEE Transa- ctions on Industrial Electronics, 2020, 67(3): 1728-1738. [69] GALEA M, BUTICCHI G, EMPRINGHAM L, et al.Design of a high-force-density tubular motor[J]. IEEE Transactions on Industry Applications, 2014, 50(4): 2523-2532. [70] FAN Xinggang, LI Dawei, QU Ronghai, et al.Water cold plates for efficient cooling: verified on a permanent- magnet machine with concentrated winding[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5325-5336. [71] CHANG Jiujian, FAN Yanen, WU Jinglai, et al.A yokeless and segmented armature axial flux machine with novel cooling system for in-wheel traction applications[J]. IEEE Transactions on Industrial Elec- tronics, 2021, 68(5): 4131-4140. [72] VANSOMPEL H, LEIJNEN P, SERGEANT P.Multi- physics analysis of a stator construction method in yokeless and segmented armature axial flux PM machines[J]. IEEE Transactions on Energy Conversion, 2019, 34(1): 139-146. [73] MOHAMED A, HEMEIDA A, RASEKH A, et al.A 3D dynamic lumped parameter thermal network of air- cooled YASA axial flux permanent magnet syn- chronous machine[J]. Energies, 2018, 11(4): 774. [74] MADONNA V, WALKER A, GIANGRANDE P, et al.Improved thermal management and analysis for stator end-windings of electrical machines[J]. IEEE Transa- ctions on Industrial Electronics, 2019, 66(7): 5057-5069. [75] MADONNA V, GIANGRANDE P, WALKER A, et al.On the effects of advanced end-winding cooling on the design and performance of electrical machines[C]// 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 2018: 311-317. [76] WANG Shengnan, LI Yunhua, LI Yunze, et al.Transient cooling effect analyses for a permanent- magnet synchronous motor with phase-change- material packaging[J]. Applied Thermal Engineering, 2016, 109: 251-260. [77] WANG Shengnan, LI Yunhua, LI Yunze, et al.Conception and experimental investigation of a hybrid temperature control method using phase change material for permanent magnet synchronous motors[J]. Experimental Thermal and Fluid Science, 2017, 81: 9-20. [78] 傅鹏睿. 高转矩密度永磁同步电机电磁与温升特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [79] GENG Weiwei, ZHU Ting, LI Qiang, et al.Windings indirect liquid cooling method for a compact outer- rotor PM starter/generator with concentrated windings[J]. IEEE Transactions on Energy Conversion, 2021, 36(4): 3282-3293. [80] 温万昱. 基于热管的新能源汽车电机散热系统设计与性能分析[D]. 广州: 华南理工大学, 2017. [81] HUANG Junkui, SHOAI NAINI S, MILLER R, et al.A hybrid electric vehicle motor cooling system-design, model, and control[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4467-4478. [82] POLIKARPOVA M, PONOMAREV P, LINDH P, et al.Hybrid cooling method of axial-flux permanent- magnet machines for vehicle applications[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7382-7390. [83] SUN Yalong, ZHANG Shiwei, CHEN Gong, et al.Experimental and numerical investigation on a novel heat pipe-based cooling strategy for permanent magnet synchronous motors[J]. Applied Thermal Engineering, 2020, 170: 114970. [84] FANG Guoyun, YUAN Wei, YAN Zhiguo, et al.Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor[J]. Applied Thermal Engineering, 2019, 152: 594-604. [85] 孙亚隆. 永磁同步电机热管式散热系统设计与性能分析[D]. 广州: 华南理工大学, 2019. |
|
|
|